See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/342510119

## Mechanics I

Book • June 2020
atations -2

1 author:
Babar Ahmad
COMSATS Institute of Information Technology Islamabad, Pakistan 23 PUBLICATIONS 25 CITATIONS

SEE PROFILE



STATICS

## Dr. Babar Ahmad

A Textbook for Undergraduate Science and Engineering Programs

# Copyright owned by the Author 

## babar.sms@gmail.com


#### Abstract

All rights are reserved. No part of this book may be reproduced, or transmitted, in any form or by any means - including, but not limited to electronic, mechanical, photocopying, recording, or, otherwise or used for any commercial purpose what so ever without the prior written permission of the writer and, if author considers necessary, formal license agreement with author may be executed.


Edition: 2020
Price

Disclaimer: The author has used his best efforts for this publication to meet the quality standards, but does not assume, and hereby disclaims for any loss or damage caused by the errors or omissions in this publication, where such errors or emissions result from negligence, accident, or any other cause.

> To My Parents
> Mr. \& Mrs. Rana Muhammad Hanif (late)
> (May ALLAH bless them)

## PREFACE

Mechanics is one of the most important course in maximum disciplines of science and engineering. No matter what your interest in science or engineering, mechanics will be important for you.
Mechanics is a branch of physics which deals with the bodies at rest and in motion. During the early modern period, scientists such as Galileo, Kepler, and Newton laid the foundation for what is now known as classical mechanics. Hence there is an extensive use of mathematics in its foundation.
Mechanics is core course for undergraduate Mathematics, Physics and many engineering disciplines. It appears under different names as Analytical/Classical Mechanics, Theoretical Mechanics, Mechanics I, Mechanics II, Mechanics III, Analytical Dynamics.
This textbook is designed to support teaching activities in Theoretical Mechanics specially Statics. It covers the contents of "Mechanics" for many undergraduate science and engineering programs. It presents simply and clearly the main theoretical aspects of mechanics.
It is assumed that the students have completed their courses in Calculus, Linear Algebra and Differential Equations. This book also lay the foundations for further studies in physics, physical sciences, and engineering.
For each concept a number books, documents and lecture notes are consulted. I wish to express my gratitude to the authors of such works.
In Chapter 1, the units and dimension of different physical quantities are given. They are referred from The International System of Units (SI), NIST Special Publication 3302008 Edition, Barry N. Taylor and Ambler Thompson, Editors. Chapter 2 is about vector and scalar quantities. In this chapter we will learn to represent a vector in one, two and three dimensional coordinate systems. We will also learn techniques to add or decompose vectors. Also we will learn to take their products, which may be scalar or vector.
In Chapter 3, we will learn how forces can be composed into a single force and how a force can be resolved into different components. Also couple of forces and moment of a force are presented in this chapter. Chapter 4 contains concepts of equilibrium. Friction, its types and laws are presented in chapter 5.
Chapter 6 is about Linear Momentum, Impulse and Collision. It also contains law of conservation of linear momentum. In Chapter 7, we discuss Angular Momentum and its law of conservation. Chapter 8 contains theoretical aspects of Work, Energy, Power and Conservative Force. Also the law of conservation of energy is presented in this chapter. In these three chapters, three laws of conservation are presented.
In chapter 9 , the concepts of virtual displacement and virtual work are presented. Center of mass and center of gravity of homogeneous objects are discussed in chapter 10. In this chapter, we consider discrete and continuous distribution of mass of homogeneous objects only. Nonhomogeneous objects will be considered in next edition. In chapter 11, the concepts of Moments of Inertia and Products of Inertia with examples are presented. Some properties of rigid bodies like, Radius of Gyration, angular momentum, rotational kinetic energy, Euler dynamical equations are also presented in this chapter.

In a book of this concept, level and size, there may be a possibility that some misprint might have remained uncorrected. If you find such misprints or want to give some suggestions for its improvement, please write me at: babar.sms@ gmail.com

Dr. Babar Ahmad
Islamabad, Pakistan
June, 2020

## Table of Contents

Table of Contents ..... vii
1 Units and Dimensions of Physical Quantities ..... 1
1.1 International System of Units (SI) ..... 1
1.1.1 Base Units ..... 1
1.1.2 Derived Units with Special Names ..... 2
1.1.3 Decimal Multiples and Submultiples of SI Units ..... 3
1.2 Units outside the SI ..... 3
1.3 Dimensions ..... 5
2 Scalars and Vectors ..... 9
2.1 Scalar Quantities or Scalars ..... 9
2.2 Vector Quantities or Vectors ..... 9
2.2.1 Geometric Representation of a Vector ..... 9
2.2.2 Position Vector with reference to the Origin ..... 10
2.2.3 Position Vector with reference to a point other than the Origin ..... 12
2.2.4 Unit Vectors ..... 13
2.2.5 Magnitude of a Vector ..... 14
2.2.6 Normalizing a Vector ..... 15
2.2.7 Equal Vectors ..... 15
2.2.8 Parallel Vectors ..... 15
2.3 Free-body diagram ..... 16
2.4 System of Vectors ..... 16
2.5 Scalar and Vector Products of Two Vectors ..... 17
2.5.1 Scalar or Dot Products of Two Vectors ..... 17
2.5.2 Angle Between Two Vectors ..... 18
2.5.3 Direction Angles ..... 20
2.5.4 Decomposing Vector into Orthogonal Components ..... 23
2.5.5 Orthogonal Components of a Vector with Reference to the Origin ..... 26
2.5.6 Vector or Cross Product of Two Vectors ..... 28
2.6 Scalar or Dot Product of Three Vectors ..... 30
2.7 Addition of Vectors ..... 31
2.7.1 Head to Tail Rule of Vector Addition ..... 32
2.7.2 Triangle Law of Vector Addition ..... 32
2.7.3 Polygon Law of Vector Addition ..... 32
2.7.4 Subtraction of vectors ..... 33
2.7.5 Parallelogram Law of Vector Addition ..... 34
2.7.6 Resolved Components of a Vector in Two given Directions ..... 39
2.8 Resultant of Coplanar Vectors ..... 43
2.8.1 Resultant of Two Coplanar Vectors ..... 44
2.8.2 Resultant of $n$ Coplanar Vectors ..... 45
2.8.3 Resultant of $n$ Non-coplanar Vectors ..... 46
2.9 Resultant of Concurrent and Coplanar Vectors ..... 46
2.9.1 Resultant of Two Concurrent and Coplanar Vectors ..... 47
2.9.2 Resultant of $n$ Concurrent and Coplanar Vectors ..... 48
2.10 Resultant of Three Concurrent and Non-coplanar Vectors ..... 50
2.11 Vector Field ..... 54
2.11.1 Gradient of a Function ..... 54
2.11.2 Divergence and Curl ..... 55
3 Composition and Resolution of Forces ..... 61
3.1 Force ..... 61
3.1.1 Effect of Force ..... 62
3.1.2 Fundamental Natural Forces ..... 62
3.1.3 System of Forces ..... 63
3.1.4 Classification of Forces ..... 63
3.1.5 Some other Well known Forces ..... 65
3.2 Composition and Resolution of Forces ..... 65
3.3 Resultant of Coplanar and non-Concurrent Forces ..... 66
3.3.1 Head to Tail Method ..... 66
3.3.2 Subtraction of forces ..... 69
3.4 Resultant of Concurrent and Coplanar Forces ..... 71
3.4.1 Parallelogram Law ..... 71
3.4.2 Ratio Theorem ..... 81
3.5 Resolution Of Forces ..... 86
3.5.1 Resolved Components of a Force in Two given Directions ..... 87
3.5.2 Rectangular Components of a Force ..... 89
3.5.3 Resolved Components of a Force in Rectangular Coordinate System ..... 90
3.6 Resultant of Coplanar Forces Using Rectangular Components ..... 93
3.6.1 Resultant of Two Coplanar Vectors ..... 94
3.6.2 Resultant of $n$ Coplanar Vectors ..... 95
3.6.3 Resultant of $n$ Non-coplanar Vectors ..... 96
3.7 Resultant of Concurrent and Coplanar Vectors ..... 96
3.7.1 Resultant of Two Concurrent and Coplanar Vectors ..... 97
3.7.2 Resultant of $n$ Concurrent and Coplanar Vectors ..... 99
3.8 Resultant of Three Concurrent and Non-coplanar Forces ..... 103
3.9 Moment of a Force or Torque ..... 105
3.9.1 Moment of a Force About a Point ..... 105
3.9.2 Moment of a Force About a Point Lying on the Line of Action of the Force ..... 106
3.10 Couples ..... 112
3.10.1 Moment of a Couple ..... 113
3.11 Composition of Couples ..... 116
3.12 A Force and a Couple ..... 116
3.13 Reduction of a System of Coplanar Forces to one Force and one Couple ..... 119
4 Equilibrium ..... 123
4.1 Equilibrium ..... 123
4.1.1 Conditions of Equilibrium ..... 123
4.2 Moment of a Force and Equilibrium ..... 138
5 Friction ..... 141
5.1 Friction ..... 141
5.1.1 Types of Friction ..... 141
5.1.2 Static and Kinetic Friction ..... 142
5.1.3 Laws of Dry Friction ..... 143
5.1.4 Angle of Friction ..... 144
5.1.5 Cone of Friction ..... 145
5.1.6 Role of Friction (Benefits) ..... 145
5.2 Condition of Equilibrium of a Particle on a Rough Inclined Plane ..... 146
5.3 Least force required to drag a body on a rough plane ..... 147
5.3.1 Least Force Required to Drag a Body on a Rough Horizontal Plane ..... 148
5.3.2 Least Force Required to Drag a Body on a Rough Inclined Plane ..... 149
6 Linear Momentum, Impulse and Collision ..... 157
6.1 Linear Momentum ..... 157
6.1.1 Linear Momentum and Newtons Second Law of Motion ..... 158
6.1.2 Law of Conservation of Linear Momentum ..... 159
6.2 Impulse of a Force ..... 160
6.2.1 Linear Momentum and Kinetic Energy ..... 162
6.3 Collision and Impact ..... 163
6.3.1 Elastic Collision ..... 163
6.3.2 Inelastic Collision ..... 163
6.4 Impulsive Forces ..... 163
6.4.1 Elastic Collision in One Dimension ..... 165
6.5 Impact of Elastic Bodies ..... 167
6.5.1 Definitions ..... 168
6.6 Coefficient of Restitution. ..... 170
7 Angular Momentum ..... 177
7.1 Angular Momentum ..... 177
7.1.1 Angular Momentum and Uniform Circular Motion ..... 179
7.1.2 Angular Momentum of a System of $n$ Particles ..... 180
7.1.3 Magnitude of Angular Momentum in Polar Coordinates ..... 180
7.1.4 Law of Conservation of Angular Momentum ..... 181
8 Work Energy and Conservative Force ..... 185
8.1 Work ..... 185
8.1.1 Work done by a Constant Force ..... 186
8.2 Energy ..... 187
8.2.1 Kinetic Energy ..... 187
8.2.2 Kinetic Energy in terms of Work ..... 188
8.2.3 Potential Energy ..... 189
8.2.4 Potential Energy is converted to Kinetic Energy and vice-versa ..... 190
8.3 Power ..... 190
8.3.1 Efficiency ..... 191
8.4 Work done by a Variable Force ..... 191
8.5 Conservative Force ..... 191
8.6 Examples of conservative and Non Conservative Force Field ..... 192
8.6.1 The Earth's Gravitational Field is Conservative ..... 192
8.6.2 Potential Energy and Conservative Force ..... 195
8.7 Law of Conservation of Energy ..... 206
9 Virtual Displacement and Virtual Work ..... 215
9.0.1 Virtual Displacement ..... 215
9.0.2 Real and Virtual Displacement ..... 215
9.0.3 Virtual Work ..... 216
9.1 Workless Constraints ..... 217
9.1.1 Principle of Virtual Work ..... 217
10 Centers of Mass and Gravity ..... 219
10.1 Density of Homogeneous Material ..... 219
10.1.1 Density of One Dimensional Object ..... 219
10.1.2 Density of Two Dimensional Object ..... 220
10.1.3 Density of Three Dimensional Object ..... 220
10.2 Moment of Mass ..... 221
10.3 Center of Gravity ..... 222
10.4 Center of Mass ..... 222
10.4.1 Center of Mass of a System of Two Particles ..... 223
10.4.2 Center of Mass of a Set of $n$ Particles ..... 223
10.4.3 Cartesian Coordinates of the Center of Mass ..... 227
10.5 Centroid of a Body or System ..... 228
10.5.1 Center of Mass of a System of $n$ Particles in Plane or Space ..... 228
10.6 Center of Mass of a Continuous Distribution of Matter ..... 229
10.6.1 Center of Mass of One Dimensional Object ..... 229
10.6.2 Center of Mass of Two Dimensional Object ..... 232
10.6.3 Center of Mass of Three Dimensional Object ..... 235
10.7 Symmetry and Center of Mass ..... 238
10.7.1 Symmetry with respect to a Point ..... 238
10.7.2 Symmetry with respect to a Line ..... 239
10.7.3 Symmetry with respect to a Plane ..... 239
10.8 Centroid of a Plane Region ..... 239
11 Moments and Products of Inertia ..... 247
11.1 Moments of Inertia ..... 247
11.1.1 Moments of Inertia of a Particle ..... 247
11.1.2 Moments of Inertia of a System of Particles ..... 248
11.2 Moment of Inertia of a Mass with Continuous Distribution ..... 248
11.2.1 Moment of Inertia of One Dimensional Particle ..... 249
11.2.2 Moment of Inertia of Two Dimensional Particle ..... 250
11.3 Moment of Inertia of Three Dimensional Particle ..... 251
11.4 Radius of Gyration ..... 253
11.5 Moment of Inertia about Coordinate Axes ..... 255
11.5.1 Moment of Inertia of a Single Particle ..... 255
11.5.2 Moment of Inertia of a System of $n$ Particles ..... 256
11.6 Product of Inertia ..... 257
11.6.1 Product of Inertia for a System of Continuous Distribution of Mass ..... 257
11.7 Parallel Axis Theorem ..... 258
11.8 Perpendicular Axis Theorem ..... 260
11.8.1 Converse of Perpendicular Axis Theorem ..... 261
11.9 Angular Momentum of a Rigid Body ..... 262
11.9.1 Angular Momentum of a Body Rotating About an Instantaneous Axis 262
11.9.2 Angular Momentum of a Body Rotating About a Fixed Point and Fixed Axis ..... 264
11.10Kinetic Energy of a Body Rotating About a Fixed Point ..... 269
11.11Principal Axes ..... 271
11.12Equimomental Systems ..... 282
11.13Coplanar Distribution ..... 285
11.14Euler's Dynamical Equations for the Motion of a Rigid Body About a Fixed Point ..... 290
11.15Principle of Gyroscopic Compass ..... 291
11.16Momental Ellipsoid ..... 292
11.17Examples ..... 294
11.18One Dimensional Systems ..... 294
11.19Two Dimensional Systems ..... 302
11.19.1 System in Cartesian Coordinate System ..... 302
11.19.2 Moment of Inertia of a Uniform Triangular Disc (Lamina) ..... 313
11.19.3 Moment of Inertia of a Uniform Isosceles Triangular Disc (Lamina) ..... 315
11.19.4 Moment of Inertia of a Uniform Equilateral Triangular Disc (Lamina) ..... 318
11.20Polar coordinates ..... 320
11.20.1 Moment of Inertia of a Circular Ring (Hoop) ..... 320
11.20.2 About the Diameter of the Ring or About an Axis in the Plane of the Ring and Passing Through its Center ..... 320
11.20.3 About an Axis Perpendicular to Plane of the Ring and Passing Through its Center ..... 322
11.20.4 About a Line Tangent to Ring ..... 322
11.20.5 Moment of Inertia of a Uniform Circular Disc ..... 323
11.20.6 About the Diameter of the Disc OR an Axis in the Plane of the Disc and Passing Through its Center ..... 324
11.20.7 About an Axis Perpendicular to Plane of the Disc and Passing Through its Center ..... 326
11.20.8 About a Line Tangent to Disc - Parallel Axis Theorem ..... 326
11.20.9 Moment of Inertia of a Uniform Elliptic Disc ..... 327
11.21Three Dimensional ..... 331
11.21.1 Cartesian Coordinates ..... 331
11.21.2 Cylindrical Coordinates ..... 347
11.21.3 Spherical Coordinates ..... 359
11.21.4 Moment of Inertia of a Solid Sphere About $z$ Axis ..... 361
11.21.5 Moment of Inertia of a Hemisphere About Coordinate Axis ..... 364
11.21.6 Moment of Inertia of a Ellipsoid About $x$ Axis ..... 366
11.21.7 Moment of Inertia of a Prolate Ellipsoid About $x$ Axis ..... 370
Bibliography ..... 382

## Chapter 1

## Units and Dimensions of Physical Quantities

In science problems, it is important to know the numerical value of the quantities but it is also important to understand the units and physical dimensions of the variable(s) involving in that problem. For units the mostly used system is INTERNATIONAL SYSTEM OF UNITS (SI).

### 1.1 International System of Units (SI)

The International System of Units (SI), NIST Special Publication 330, 2008 Edition, B.N. Taylor, editor. United States Department of Commerce, National Institute of Standards and Technology Gaithersburg, MD 20899.
There are two classes of SI units.

- base units;
- derived units.


### 1.1.1 Base Units

From the scientific point of view, the division of SI units into these two classes is to a certain extent arbitrary, because it is not essential to the physics of the subject. Nevertheless, the CGPM (General Conference on Weights and Measures), considering the advantages of a single, practical, world-wide system of units for international relations, for teaching, and for scientific work, decided to base the International System on a choice of seven welldefined units which by convention are regarded as dimensionally independent: the meter,

1 Units and Dimensions of Physical Quantities
the kilogram, the second, the ampere, the kelvin, the mole, and the candela. These SI units are called base units and are given in table 1.1.

Table 1.1: SI base units

| Physical quantity | Name of unit | Symbol |
| :--- | :--- | :--- |
| length | meter | m |
| mass | kilogram | kg |
| time | second | s |
| electric current | ampere | A |
| thermodynamic temperature | kelvin | K |
| amount of substance | mole | mol |
| luminous intensity | candela | cd |

### 1.1.2 Derived Units with Special Names

The second class of SI units is that of derived units . These are units that are formed as products of powers of the base units according to the algebraic relations linking the quantities concerned. The names and symbols of some units thus formed in terms of base units may be replaced by special names and symbols which can themselves be used to form expressions and symbols for other derived units.

## a) Units expressed in terms of base units

In table 1.2 lists some examples of derived units expressed directly in terms of base units. The derived units are obtained by multiplication and division of base units.

Table 1.2: Examples of SI derived units expressed in terms of base units

| Derived quantity | Name of unit | Symbol |
| :--- | :--- | :--- |
| area | square meter | $\mathrm{m}^{2}$ |
| volume | cubic meter | $\mathrm{m}^{3}$ |
| speed, velocity | meter per second | $\mathrm{m} / \mathrm{s}$ |
| acceleration | meter per second squared | $\mathrm{m} / \mathrm{s}^{2}$ |
| wave number | reciprocal meter | $\mathrm{m}^{-1}$ |
| density, mass density | kilogram per cubic meter | $\mathrm{kg} / \mathrm{m}^{3}$ |
| specific volume | cubic meter per kilogram | $\mathrm{m}^{3} / \mathrm{kg}$ |
| current density | ampere per square meter | $\mathrm{A} / \mathrm{m}^{2}$ |
| magnetic field strength | ampere per meter | $\mathrm{A} / \mathrm{m}^{2}$ |
| concentration (of amount of substance) | mole per cubic meter | $\mathrm{mol} / \mathrm{m}^{3}$ |
| luminance | candela per square meter | $\mathrm{cd} / \mathrm{m}^{2}$ |
| refractive index | (the number) one | $\mathrm{I}^{(a)}$ |

## b) More derived units with special names and symbols

For convenience, certain derived units, which are listed in table 1.3, have been given special names and symbols. These names and symbols may themselves be used to express other derived units

Table 1.3: SI derived units with special names and symbols

| Physical quantity | Name of unit | Symbol |
| :--- | :--- | :--- |
| plane angle | radian | rad |
| solid angle | steradian | sr |
| frequency | hertz | Hz |
| energy | joule | J |
| force | newton | N |
| pressure | pascal | Pa |
| power | watt | W |
| electric charge | coulomb | C |
| electric potential | volt | V |
| electric resistance | ohm | $\Omega$ |
| electric conductance | siemens | S |
| electric capacitance | farad | F |
| magnetic flux | weber | Wb |
| inductance | henry | H |
| magnetic flux density | tesla | T |
| luminous flux | lumen | lm |
| illuminance | lux | lx |
| celsius temperature | degree celsius | ${ }^{\circ} \mathrm{C}$ |
| activity (of a radioactive source) | becquerel | Bq |
| absorbed dose (of ionizing radiation) | gray | Gy |
| dose equivalent | sievert | Sv |

### 1.1.3 Decimal Multiples and Submultiples of SI Units

The CGPM adopted a series of prefixes for use in forming the decimal multiples and submultiples of SI units. Following CIPM (International Committee for Weights and Measures) Recommendation 1 (1969) mentioned above, these are designated by the name SI prefixes.

### 1.2 Units outside the SI

Some non-SI unit systems like British Engineering System, still appear widely in the scientific, technical and commercial literature, and some will probably continue to be used for many years. Other non-SI units, such as the units of time, are so widely used in everyday life, and are so deeply embedded in the history and culture of the human race, that they

Table 1.4: SI prefixes

| Factor | Name | Symbol | Factor | Name | Symbol |
| :--- | :--- | :--- | :--- | :--- | :--- |
| $10^{24}$ | yotta | Y | $10^{-1}$ | deci | d |
| $10^{21}$ | zetta | Z | $10^{-2}$ | centi | c |
| $10^{18}$ | exa | E | $10^{-3}$ | milli | m |
| $10^{15}$ | peta | P | $10^{-6}$ | micro | $\mu$ |
| $10^{12}$ | tera | T | $10^{-9}$ | nano | n |
| $10^{9}$ | giga | G | $10^{-12}$ | pico | p |
| $10^{6}$ | mega | M | $10^{-15}$ | femto | f |
| $10^{3}$ | kilo | k | $10^{-18}$ | atto | a |
| $10^{2}$ | hecto | h | $10^{-21}$ | zepto | z |
| 10 | deca | da | $10^{-24}$ | yocto | y |

will continue to be used for the foreseeable future. For these reasons some of the more important non-SI units are listed in the tables below.
Table 1.5 lists non-SI units which are accepted for use with the SI. These units are in continuous everyday use.
Note: The neper and bel are used to express values of such logarithmic quantities as field

Table 1.5: Non-SI units accepted for use with the International System

| Name | Symbol | Value in SI units |
| :--- | :--- | :--- |
| minute | min | $1 \mathrm{~min}=60 \mathrm{~s}$ |
| hour | h | $1 \mathrm{~h}=60 \mathrm{~min}=3600 \mathrm{~s}$ |
| day | d | $1 \mathrm{~d}=24 \mathrm{~h}=86400 \mathrm{~s}$ |
| degree | $\circ$ | $1^{\circ}=(\pi / 180) \mathrm{rad}$ |
| minute | , | $1^{\prime}=(1 / 60)^{\circ}=(\pi / 10800) \mathrm{rad}$ |
| second | $"$ | $1^{\prime \prime}=(1 / 60)^{\prime}=(\pi / 648000) \mathrm{rad}$ |
| liter | $\mathrm{l}, \mathrm{L}$ | $1 \mathrm{~L}=1 d m^{3}=10^{-3} \mathrm{~m}^{3}$ |
| metric ton | t | $1 \mathrm{t}=10^{3} \mathrm{~kg}$ |
| neper | $N_{p}$ | $1 N_{p}=1$ |
| bel | B | $1 \mathrm{~B}=(1 / 2) \ln 10\left(N_{p}\right)^{(i)}$ |

level, power level, sound pressure level, and logarithmic decrement. Natural logarithms are used to obtain the numerical values of quantities expressed in nepers and logarithms to base ten are used to obtain the numerical values of quantities expressed in bels.
Table 1.6 lists three non-SI units which are also accepted for use with the SI, whose values expressed in SI units must be obtained by experiment and are therefore not known exactly. These units are in common use in certain specialized fields. Table 1.7 lists some other nonSI units which are currently accepted for use with the SI to satisfy the needs of commercial, legal, and specialized scientific interests. These units should be defined in relation to the SI in every document in which they are used. Their use is not encouraged. The barn is a special unit employed in nuclear physics to express effective cross-sections.

Table 1.6: Non-SI units accepted for use with the International System, whose values in SI units are obtained experimentally

| Name | Symbol | Value in SI units |
| :--- | :--- | :--- |
| electronvolt | eV | $1 \mathrm{eV}=1.60217733(49) \times 10^{19} \mathrm{~J}$ |
| unified atomic mass unit | u | $1 \mathrm{u}=1.6605402(10) \times 10^{27} \mathrm{~kg}$ |
| astronomical unit | ua | $1 \mathrm{ua}=1.49597870(30) \times 10^{11} \mathrm{~m}$ |

Table 1.7: Other non-SI units currently accepted for use with the International System

| Name | Symbol | Value in SI units |
| :--- | :--- | :--- |
| nautical mile |  | 1 nautical mile $=1852 \mathrm{~m}$ |
| knot |  | 1 nautical mile per hour $=(1852 / 3600) \mathrm{m} / \mathrm{s}$ |
| are | a | $1 \mathrm{a}=1 \mathrm{dam}^{2}=10^{2} m^{2}$ |
| hectare | ha | $1 \mathrm{ha}=1 \mathrm{hm}^{2}=10^{4} \mathrm{~m}^{2}$ |
| bar | bar | $1 \mathrm{bar}=0.1{\mathrm{MPa}=100 \mathrm{kPa}=1000 \mathrm{hPa}=10^{5} \mathrm{~Pa}}_{\text {barn }}^{\text {bar }}$ |
| curie | b | $1 \mathrm{bb}=100 \mathrm{fm}^{2}=10^{-28} \mathrm{~m}^{2}$ |
| roentgen | Ci |  |
| rad | R |  |
| rem | rad |  |

### 1.3 Dimensions

A quantity can be measured in size, number, weight or amount of something. All physical quantities on Earth have dimensions that can be expressed in terms and combinations of 5 basic dimensions: mass $(M)$, length $(L)$, time $(T)$, electrical current $(I)$, and temperature $(\theta)$. These 5 dimensions are considered basic because they are easy to measure in experiments.
Dimensions are not the same as units. Rather, units express the system of measurement for the various dimensions. For example, speed can measured in units of metres per second $(\mathrm{m} / \mathrm{s})$ or kilometers per hour $(\mathrm{km} / \mathrm{hr})$ but the dimensions of speed are always a length ( $L$ ) divided by time $(T)$, or simply $L T^{-1}$. Similarly, the dimensions of area are $L \times L$ or $L^{2}$ and the units can be expressed in $m^{2}$. This is a useful means of working with physical quantities as it enables to determine the "dimensions" involved and the appropriate units of the quantity, especially in equations involving many variables and parameters. The dimensions of some useful quantities are listed in table. Note that the angle and solid angle are included in this list but are actually dimensionless quantities.

## Some examples

Table 1.8: Different quantities with units and dimensional formula,

| Derived quantity | Symbol of unit | Dimensioin |
| :--- | :--- | :--- |
| angle | rad | 1 |
| area | $\mathrm{m}^{2}$ | $L^{2}$ |
| volume | $\mathrm{m}^{3}$ | $\mathrm{~L}^{3}$ |
| speed, velocity | $\mathrm{m} / \mathrm{s}$ | $L T^{-1}$ |
| acceleration | $\mathrm{m} / \mathrm{s}^{2}$ | $L T^{-2}$ |
| Frequency | hertz s | $T^{-1}$ |
| density, mass density | $\mathrm{kg} / \mathrm{m}^{3}$ | $M L^{-3}$ |
| specific volume | $\mathrm{m}^{3} / \mathrm{kg}^{\text {Force }}$ | Newton $\left(N=\mathrm{kgms}^{-2}\right)$ |
| Impulse | $\mathrm{N.s}$ | $\mathrm{~L}^{3} T^{-1}$ |
| Work | $\mathrm{N} . \mathrm{m}$ | $M L T^{-2}$ |
| Power | Joule or $J$ | $M L T^{1}$ |

Unit of Force: Force is measured in Newtons in the SI system:

$$
1 N=(1 \mathrm{~kg})\left(\mathrm{m} / \mathrm{s}^{2}\right)
$$

1 Newton is the force required to give a mass of 1 kg an acceleration of $1 \mathrm{~m} / \mathrm{s}^{2}$. and in the Non SI or British Engineering system:

$$
1 l b=1 \text { slugft } / s 2=4.448 \mathrm{~N}
$$

The value of $g$ in SI system is

$$
g=9.81 \mathrm{~m} / \mathrm{s}^{2}
$$

and in non SI system is

$$
g=32.2 \mathrm{ft} / \mathrm{s}^{2}
$$

Weight The weight of 1 kg mass in SI system is:

$$
\begin{aligned}
W & =m g \\
& =(1 \mathrm{~kg})\left(9.81 \mathrm{~m} / \mathrm{s}^{2}\right) \\
& =9.81 \mathrm{~N}
\end{aligned}
$$

The mass of an object that weighs 1 pound:

$$
\begin{aligned}
F & =m a \\
1 l b & =m(1 f t / s 2) \\
m & =1 l b s^{2} / f t=1 \text { slug }
\end{aligned}
$$

## Exercises

1. A wrist watch gains time at the rate of 5.5 second per day. Calculate the error after (i) an hour (ii) a month (iii) an year
2. The acceleration of a particle due to gravity is $9.80 \mathrm{~m} / \mathrm{s}^{2}$. What is its value in $f t / \mathrm{s}^{2}$ ?
3. Convert the value of $G$ from SI system to C.G.S.
4. Calculate the dimension of $F=\frac{m v^{2}}{r}$

## Chapter 2

## Scalars and Vectors

In mechanics, we come across various quantities such as mass, length, time, speed, velocity, area, volume, acceleration and force etc. These quantities are of two types namely scalars and vectors.

### 2.1 Scalar Quantities or Scalars

The quantities which possess only magnitude are called scalars. For example, the length of a bar is 2 m . Other examples of scalars are distance, speed, volume, density, temperature etc.

### 2.2 Vector Quantities or Vectors

The quantities which are specified by magnitude as well as direction are called vectors. For example, winds are usually described by giving their speed and direction, say $20 \mathrm{~km} / \mathrm{h}$ northeast. The wind speed and wind direction together form a vector quantity called the wind velocity. Other examples of vectors are displacement, acceleration, force, weight, momentum etc.

### 2.2.1 Geometric Representation of a Vector

Geometrically a vectors can be represented by an arrow in $2-$ space or $3-$ space; the direction of the arrow specifies the direction of the vector and the length of the arrow describes its magnitude. The tail of the arrow is called the initial point and the tip of the arrow is called the terminal point of the vector.
Physical quantities are also represented by symbols, lowercase or uppercase alphabet. We denote vectors with overline arrow such as $\vec{a}, \vec{p}, \vec{v}, \vec{F}$, and $\vec{W}$. When discussing vectors, we will refer to real numbers as scalars. Scalars will be denoted by $a, m, t, v$, and $E$.

From above we can say that vector quantities are completely specified by the following four characteristics:

- Magnitude
- Point of application
- Line of action, and
- Direction

First consider vectors whose initial point or reference point is origin.

### 2.2.2 Position Vector with reference to the Origin

In mechanics, a vector may be one dimensional, two dimensional or three dimensional.
(a) Vector in 1 - space

In 1 - space, the position vector of $P$ relative to origin $O$ is a vector $\vec{r}=\overrightarrow{O P}$ (from point $O$ to point $P$ ), having magnitude of the length of line $\overline{O P}$. A plus or minus sign is enough to specify its direction. If point $P$ is on right from $O$, we assign plus sign, and if it is on left from $O$, we assign minus sign. The vector $\vec{r}$ is shown in Fig. 2.1, as an arrow from $O$ to $P$.


Figure 2.1: Position vector w.r.t origin in 1-space
(b) Vector in 2 - space

In 2 - space, the origin has coordinates $O(0,0)$. Take a point $P(x, y)$, then its position vector relative to $O$ is a vector $\vec{r}=\overrightarrow{O P}$ (from point O to point P ), having magnitude of the length of line $\overline{O P}$ and direction parallel to line $\overline{O P}$. The vector $\vec{r}$ is shown in Fig. 2.2, as an arrow from O to P , and is written as

$$
\begin{equation*}
\vec{r}=\overrightarrow{O P}=\langle x, y\rangle \tag{2.2.1}
\end{equation*}
$$

It means that if the initial point of a vector is at the origin then the components of a vector are the coordinates of its terminal point. The position vector of $P$ relative to $P$ is a zero vector.


Figure 2.2: Position vector w.r.t origin in 2-space

Example 2.2.1. The position vector of $P(2,1)$ relative to $O$ is

$$
\vec{r}=\langle 2,1\rangle
$$

(c) Vector in 3 - space

In 3 - space, the origin has coordinates $O(0,0,0)$. Take a point $P(x, y, z)$, then its position vector relative to $O$ is a vector $\vec{r}=\overrightarrow{O P}$ having magnitude of the length of line $\overline{O P}$ and direction parallel to line $\overline{O P}$. The vector $\vec{r}$ is shown in Fig. 2.3, as an arrow from O to P , and is written as

$$
\begin{equation*}
\vec{r}=\overrightarrow{O P}=\langle x, y, z\rangle \tag{2.2.2}
\end{equation*}
$$



Figure 2.3: Position vector w.r.t origin in 3-space

Example 2.2.2. The position vector of $P(2,3,2)$ relative to $O$ is

$$
\vec{r}=\langle 2,3,2\rangle
$$

### 2.2.3 Position Vector with reference to a point other than the Origin

(a) Vector in 2 - space

The components of a vector whose initial point is not at the origin can be calculated by two points $A\left(x_{1}, y_{1}\right)$ and $B\left(x_{2}, y_{2}\right)$ whose position vectors are

$$
\begin{aligned}
\vec{a}=\overrightarrow{O A} & =\left\langle x_{1}, y_{1}\right\rangle \\
\vec{b}=\overrightarrow{O B} & =\left\langle x_{2}, y_{2}\right\rangle
\end{aligned}
$$

Then $\overrightarrow{A B}$ is


Figure 2.4: Position vector w.r.t a point other than origin in $2-$ space

$$
\begin{align*}
\overrightarrow{A B} & =\overrightarrow{O B}-\overrightarrow{O A} \\
& =\left\langle x_{2}-x_{1}, y_{2}-y_{1}\right\rangle \tag{2.2.3}
\end{align*}
$$

(b) Vector in 3 - space

For 3 - space, consider two points $A\left(x_{1}, y_{1}, z_{1}\right)$ and $B\left(x_{2}, y_{2}, z_{2}\right)$ whose position vectors are

$$
\begin{aligned}
\vec{a} & =\overrightarrow{O A}
\end{aligned}=\left\langle x_{1}, y_{1}, z_{1}\right\rangle,
$$

Then $\overrightarrow{A B}$ is

$$
\begin{align*}
\overrightarrow{A B} & =\overrightarrow{O B}-\overrightarrow{O A} \\
& =\left\langle x_{2}-x_{1}, y_{2}-y_{1}, z_{2}-z_{1}\right\rangle \tag{2.2.4}
\end{align*}
$$

Example 2.2.3. In 2-space the vector from $A(1,2)$ to $B(3,-2)$ is

$$
\begin{aligned}
\overrightarrow{A B} & =\langle 3-1,-2-2\rangle \\
& =\langle 2,-4\rangle
\end{aligned}
$$



Figure 2.5: Position vector w.r.t a point other than origin in $3-$ space
and in 3-space the vector from $P(1,-2,-1)$ to $Q(3,3,-1)$ is

$$
\begin{aligned}
\overrightarrow{P Q} & =\langle 3-1,3+2,-1+1\rangle \\
& =\langle 2,5,0\rangle
\end{aligned}
$$

### 2.2.4 Unit Vectors

A vector of magnitude 1 is called a unit vector. In an $x y$-coordinate ( $2-$ space) system the unit vectors along the $x-$ and $y$-axes are denoted by $\hat{i}$ and $\hat{j}$ respectively as shown in left of Fig. 2.6; and in an $x y z$-coordinate ( $3-s p a c e$ ) system the unit vectors along the $x-, y-$, and $z$-axes are denoted by $\hat{i}, \hat{j}$ and $\hat{k}$ respectively as shown in right of Fig. 2.6. The unit vectors in $2-$ space are


Figure 2.6: Unit vectors along coordinate axes

$$
\begin{aligned}
& \hat{i}=\langle 1,0\rangle \\
& \hat{j}=\langle 0,1\rangle
\end{aligned}
$$

The $\vec{r}$ with the combination of unit vectors $\hat{i}, \hat{j}$ can also be written as

$$
\begin{equation*}
\vec{r}=\overrightarrow{O P}=x \hat{i}+y \hat{j} \tag{2.2.5}
\end{equation*}
$$

and in 3 - space, the unit vectors are

$$
\begin{aligned}
& \hat{i}=\langle 1,0,0\rangle \\
& \hat{j}=\langle 0,1,0\rangle \\
& \hat{k}=\langle 0,0,1\rangle
\end{aligned}
$$

The $\vec{r}$ with the combination of unit vectors $\hat{i}, \hat{j}, \hat{k}$ can also be written as

$$
\begin{equation*}
\vec{r}=\overrightarrow{O P}=x \hat{i}+y \hat{j}+z \hat{k} \tag{2.2.6}
\end{equation*}
$$

In example 2.2.2, $\vec{r}$ can also be written as


Figure 2.7: Position vector w.r.t origin.

$$
\vec{r}=2 \hat{i}+3 \hat{j}+2 \hat{k}
$$

### 2.2.5 Magnitude of a Vector

The magnitude of $\vec{r}=x \hat{i}+y \hat{j}$ in $2-$ space is

$$
\begin{equation*}
\|\vec{r}\|=r=\sqrt{x^{2}+y^{2}} \tag{2.2.7}
\end{equation*}
$$

The magnitude of $\vec{r}=x \hat{i}+y \hat{j}+z \hat{k}$ in $3-$ space is

$$
\begin{equation*}
\|\vec{r}\|=r=\sqrt{x^{2}+y^{2}+z^{2}} \tag{2.2.8}
\end{equation*}
$$

The magnitude of $\vec{r}=\langle 2,1,2\rangle$ is

$$
\begin{aligned}
r & =\sqrt{2^{2}+1^{2}+2^{2}} \\
& =\sqrt{4+1+4}=\sqrt{9} \\
& =3
\end{aligned}
$$

### 2.2.6 Normalizing a Vector

Normalizing a vector is to find a unit vector $\hat{r}$ that has the same direction as some given nonzero vector $\vec{r}$. This unit vector is obtained by multiplying $\vec{r}$ by the reciprocal of its magnitude $r$; If $\vec{r}$ is vector in $2-$ space, the unit vector is

$$
\begin{align*}
\hat{r} & =\frac{\vec{r}}{r} \\
& =\frac{x}{r} \hat{i}+\frac{y}{r} \hat{j} \tag{2.2.9}
\end{align*}
$$

If $\vec{r}$ is vector in $3-$ space, the unit vector is

$$
\begin{align*}
\hat{r} & =\frac{\vec{r}}{r} \\
& =\frac{x}{r} \hat{i}+\frac{y}{r} \hat{j}+\frac{z}{r} \hat{k} \tag{2.2.10}
\end{align*}
$$

The unit vector $\hat{r}$ for the $\vec{r}=\langle 2,1,2\rangle$ is

$$
\begin{aligned}
\hat{r} & =\frac{\langle 2,1,2\rangle}{3} \\
& =\left\langle\frac{2}{3}, \frac{1}{3}, \frac{2}{3}\right\rangle
\end{aligned}
$$

### 2.2.7 Equal Vectors

Two vectors are equal if and only if their corresponding components are equal. Thus two vectors $\vec{a}=\left\langle x_{1}, y_{1}, z_{1}\right\rangle$ and $\vec{b}=\left\langle x_{2}, y_{2}, z_{2}\right\rangle$ are equal if and only if $x_{1}=x_{2}, y_{1}=y_{2}$ and $z_{1}=z_{2}$

### 2.2.8 Parallel Vectors

Two vectors $\vec{a}$ and $\vec{b}$ are parallel if there exist a scalar $k \in \mathbb{R}$ such that

$$
\begin{equation*}
\vec{a}=k \vec{b} \tag{2.2.11}
\end{equation*}
$$

If $k>0$, vectors $\vec{a}$ and $\vec{b}$ have same direction and if $k<0$, vectors $\vec{a}$ and $\vec{b}$ have opposite direction. In Fig. 2.8, on left side, two parallel vectors $\vec{a}$ and $\vec{b}$ are acting in same direction and on right side, two parallel vectors $\vec{a}$ and $\vec{b}$ are acting in opposite directions.
Norm of (2.2.11) is

$$
\|\vec{a}\|=|k|\|\vec{b}\|
$$

Example Vectors $\vec{a}=\langle 1,-2,1\rangle, \vec{b}=\langle 3,-6,3\rangle$ and $\vec{c}=\langle-0.5,1,-0.5\rangle$ are parallel vectors. As we can write:

$$
\begin{array}{rlrlrl}
\vec{a} & =\frac{1}{3} \vec{b} \quad \text { or } & \vec{b}=3 \vec{a} \\
\vec{a} & =-2 \vec{c} & \text { or } & \vec{c}=-0.5 \vec{a} \\
\vec{b} & =-6 \vec{c} & \text { or } & \vec{c}=-\frac{1}{6} \vec{b}
\end{array}
$$



Figure 2.8: Parallel vectors

Vectors $\vec{a}$ and $\vec{b}$ are acting in the same direction while vector $\vec{c}$ acts in opposite direction.

### 2.3 Free-body diagram

The free-body diagram is a very helpful to find the solution of problems involving vectors. It is a simplified line sketch of the body, showing position, direction and point of application of all vectors described in problem. To draw it we can follow the following steps.

1. First fix an appropriate coordinate system.
2. Define the particular body from the statement of the problem.
3. Label each vector with an appropriate name.
4. Mention all vectors described in the problem. We may also consider their rectangular components. Separate horizontal and vertical vectorss.

### 2.4 System of Vectors

When several vectors act simultaneously on a body, they constitute a system of vectors. These system are named, depending on the position of line of action of the vectors as follows:

- Concurrent vectors If the line of action of all the vectors in a system pass through a single point, the vectors are termed as concurrent vectors as shown in Fig. 2.9.
- Collinear vectors If the line of action of all the vectors lie along a single line, the vectors are called collinear vector as shown in Fig. 2.9. Example is, forces on a rope in a tug of war.
- Coplanar vectors If all the vectors in a system lie in a single plane, they are called coplanar vectors and are shown in Fig. 2.10. In Fig. 2.11 (a) coplanar and concurrent vectors are shown and in Fig. 2.11 (b) coplanar and non-concurrent vectors are shown.


Figure 2.9: Concurrent and collinear vectors

- Non-Coplanar vectors If all the vectors in a system do not lie in a single plane they are called non-coplanar vectors or vectors in space.In Fig. 2.12 (a) non-coplanar and concurrent vectors are shown and in Fig. 2.12 (b) non-coplanar and non-concurrent vectors are shown.


Figure 2.10: (a) Coplanar like parallel (b) Coplanar parallel vectors

### 2.5 Scalar and Vector Products of Two Vectors

In this section we will define a new kind of multiplication in which two vectors are multiplied to produce a scalar or a vector.

### 2.5.1 Scalar or Dot Products of Two Vectors

If $\vec{a}=\left\langle x_{1}, y_{1}\right\rangle$ and $\vec{b}=\left\langle x_{2}, y_{2}\right\rangle$ are vectors in $2-$ space, then the dot product of $\vec{a}$ and $\vec{b}$ is written as $\vec{a} \cdot \vec{b}$ and is defined as

$$
\begin{equation*}
\vec{a} \cdot \vec{b}=x_{1} x_{2}+y_{1} y_{2} \tag{2.5.1}
\end{equation*}
$$



Figure 2.11: (a) Coplanar and Concurrent (b) Coplanar and Non-Concurrent vectors


Figure 2.12: (a) Non-Coplanar and Concurrent (b) Non-Concurrent and Non-Coplanar vectors

Similarly if $\vec{a}=\left\langle x_{1}, y_{1}, z_{1}\right\rangle$ and $\vec{b}=\left\langle x_{2}, y_{2}, z_{2}\right\rangle$ are vectors in 3 - space, then the dot product of $\vec{a}$ and $\vec{b}$ is written as $\vec{a} . \vec{b}$ and is defined as

$$
\begin{equation*}
\vec{a} \cdot \vec{b}=x_{1} x_{2}+y_{1} y_{2}+z_{1} z_{2} \tag{2.5.2}
\end{equation*}
$$

### 2.5.2 Angle Between Two Vectors

If $\vec{a}$ and $\vec{b}$ are nonzero vectors in $2-$ space or 3 - space, and let $\theta$ satisfies the condition $0 \leq \theta \leq \pi$, is the angle between them as shown in Fig. 2.13, then

$$
\begin{equation*}
\cos \theta=\frac{\vec{a} \cdot \vec{b}}{a b} \tag{2.5.3}
\end{equation*}
$$

Hence $\vec{a} \cdot \vec{b}$ can also be written as

$$
\begin{equation*}
\vec{a} \cdot \vec{b}=a b \cos \theta \tag{2.5.4}
\end{equation*}
$$



Figure 2.13: angle between two vectors.

Example 2.5.1. Find dot product and angle between $\vec{a}$ and $\vec{b}$ for
(a) 2-space vectors $\vec{a}=\langle 2,-4\rangle$ and $\vec{b}=\langle 2,2\rangle$.
(b) 3-space vectors $\vec{a}=\hat{i}-7 \hat{j}+6 \hat{k}$ and $\vec{b}=2 \hat{i}+2 \hat{j}+2 \hat{k}$.

## Solution

(a) The dot product of $\vec{a}$ and $\vec{b}$ is given by using (2.5.1).

$$
\begin{aligned}
\vec{a} \cdot \vec{b} & =(2)(2)+(-4)(2) \\
& =-4
\end{aligned}
$$

For angle, we first calculate the magnitudes of $\vec{a}$ and $\vec{b}$

$$
\begin{aligned}
a & =\sqrt{2^{2}+(-4)^{2}}=2 \sqrt{5} \\
b & =\sqrt{2^{2}+(2)^{2}}=2 \sqrt{2}
\end{aligned}
$$

Using (2.5.3), the angle between $\vec{a}$ and $\vec{b}$ is

$$
\begin{aligned}
\cos \theta & =\frac{4}{(2 \sqrt{5})(2 \sqrt{2})} \\
& =\frac{1}{\sqrt{10}}
\end{aligned}
$$

Hence the angle is

$$
\begin{aligned}
\theta & =\arccos \left(\frac{1}{\sqrt{10}}\right) \\
& =71.56^{\circ}
\end{aligned}
$$

(b) The dot product of $\vec{a}$ and $\vec{b}$ is given by using (2.5.1).

$$
\begin{aligned}
\vec{a} \cdot \vec{b} & =(1)(2)+(-7)(2)+(6)(2) \\
& =0
\end{aligned}
$$

For angle, we first calculate magnitudes of $\vec{a}$ and $\vec{b}$

$$
\begin{aligned}
a & =\sqrt{1^{2}+(-7)^{2}+(6)^{2}}=\sqrt{86} \\
b & =\sqrt{2^{2}+(2)^{2}+(2)^{2}}=2 \sqrt{3}
\end{aligned}
$$

Using (2.5.3), the angle between $\vec{a}$ and $\vec{b}$ is

$$
\begin{aligned}
\cos \theta & =\frac{0}{(\sqrt{86})(2 \sqrt{3})} \\
& =0
\end{aligned}
$$

Hence the angle is

$$
\begin{aligned}
\theta & =\arccos (0) \\
& =\frac{\pi}{2}
\end{aligned}
$$

Note If the dot product of two nonzero vectors is zero, then the vectors are orthogonal.

### 2.5.3 Direction Angles

In an $x y$-coordinate system $(2-$ space $)$, the direction of a nonzero vector $\vec{r}$ is completely determined by the angles $\alpha$ and $\beta$ between $\vec{r}$ and the unit vectors $\hat{i}$ and $\hat{j}$ respectively (see Fig. 2.14 (a)), and in an $x y z$-coordinate system ( $3-$ space) the direction is completely determined by the angles $\alpha, \beta$, and $\gamma$ between $\vec{r}$ and the unit vectors $\hat{i}, \hat{j}$, and $\hat{k}$ respectively (see Fig. $2.14(\mathrm{~b})$ ). In both 2 - space and 3 - space the angles between a nonzero vector $\vec{r}$ and the vectors $\hat{i}, \hat{j}$, and $\hat{k}$ are called the direction angles of $\vec{r}$, and the cosines of those angles are called the direction cosines of $\vec{r}$. Formulas for the direction cosines of a vector can be obtained from (2.5.3). The $\vec{r}$ in $2-$ space is

$$
\vec{r}=x \hat{i}+y \hat{j}
$$

Since $\alpha$ is the angle between $\hat{i}$ and $\vec{r}$, then

$$
\begin{aligned}
\cos \alpha & =\frac{\vec{r} \cdot \hat{i}}{\|\vec{r}\|\|\hat{i}\|} \\
& =\frac{x}{r}
\end{aligned}
$$



Figure 2.14: Direction angles of $\vec{r}$.

Similarly

$$
\begin{aligned}
\cos \beta & =\frac{\vec{r} \cdot \hat{j}}{\|\vec{r}\|\|\hat{j}\|} \\
& =\frac{y}{r}
\end{aligned}
$$

Then (2.2.9) can be written as

$$
\begin{align*}
\hat{r} & =\frac{x}{r} \hat{i}+\frac{y}{r} \hat{j} \\
& =\cos \alpha \hat{i}+\cos \beta \hat{j} \tag{2.5.5}
\end{align*}
$$

The direction cosines of a vector satisfy the equation

$$
\begin{equation*}
\cos ^{2} \alpha+\cos ^{2} \beta=1 \tag{2.5.6}
\end{equation*}
$$

The $\vec{r}$ in 3 - space is

$$
\vec{r}=x \hat{i}+y \hat{j}+z \hat{k}
$$

Since $\alpha$ is the angle between $\hat{i}$ and $\vec{r}$, then

$$
\begin{aligned}
\cos \alpha & =\frac{\vec{r} \cdot \hat{i}}{\|\vec{r}\|\|\hat{i}\|} \\
& =\frac{x}{r}
\end{aligned}
$$

Similarly

$$
\begin{aligned}
\cos \beta & =\frac{\vec{r} \cdot \hat{j}}{\|\vec{r}\|\|\hat{j}\|} \\
& =\frac{y}{r}
\end{aligned}
$$

and

$$
\begin{aligned}
\cos \gamma & =\frac{\vec{r} \cdot \hat{k}}{\|\vec{r}\|\|\hat{k}\|} \\
& =\frac{z}{r}
\end{aligned}
$$

Then (2.2.10) can be written as

$$
\begin{align*}
\hat{r} & =\frac{x}{r} \hat{i}+\frac{y}{r} \hat{j}+\frac{z}{r} \hat{k} \\
& =\cos \alpha \hat{i}+\cos \beta \hat{j}+\cos \gamma \hat{k} \tag{2.5.7}
\end{align*}
$$

The direction cosines of a vector satisfy the equation

$$
\begin{equation*}
\cos ^{2} \alpha+\cos ^{2} \beta+\cos ^{2} \gamma=1 \tag{2.5.8}
\end{equation*}
$$

Example 2.5.2. Find the direction cosines of the vector $\vec{a}=2 \hat{i}-4 \hat{j}+4 \hat{k}$, and approximate the direction angles to the nearest degree.

## Solution

For direction cosines, we have to normalize $\vec{a}$, the components of $\hat{a}$ will give the direction cosines. First its magnitude is

$$
\begin{aligned}
a & =\sqrt{(2)^{2}+(-4)^{2}+(4)^{2}}=\sqrt{4+16+16} \\
& =6
\end{aligned}
$$

and $\hat{a}$ is

$$
\hat{a}=\frac{1}{3} \hat{i}-\frac{2}{3} \hat{j}+\frac{2}{3} \hat{k}
$$

Thus

$$
\begin{aligned}
\cos \alpha & =\frac{1}{3} \\
\cos \beta & =-\frac{2}{3} \\
\cos \gamma & =\frac{2}{3}
\end{aligned}
$$

Then the direction angles are

$$
\begin{aligned}
& \alpha=\arccos \left(\frac{1}{3}\right) \approx 71^{\circ} \\
& \beta=\arccos \left(-\frac{2}{3}\right) \approx 132^{\circ} \\
& \gamma=\arccos \left(\frac{2}{3}\right) \approx 48^{\circ}
\end{aligned}
$$

### 2.5.4 Decomposing Vector into Orthogonal Components

In many applications it is desirable to decompose a vector into a sum of two orthogonal vectors with convenient specified directions. These components are also known as rectangular components of a vector. For example, Figure 2.15 shows a block on an inclined plane. The weight of the block $\vec{W}$ (the downward force) can be decomposed into the sum


Figure 2.15: Orthogonal components of a vector.

$$
\vec{W}=\vec{W}_{1}+\vec{W}_{2}
$$

Considering $O$ as the origin of a 2-space system. Let $\hat{e_{1}}$ and $\hat{e_{2}}$ be two orthogonal unit vectors considering $\hat{e_{1}}$ along $\vec{W}_{1}$ and $\hat{e_{2}}$ along $\vec{W}_{2}$. Then $\vec{W}$ is

$$
\begin{equation*}
\vec{W}=W_{1} \hat{e_{1}}+W_{2} \hat{e_{2}} \tag{2.5.9}
\end{equation*}
$$

$W_{1}$ and $W_{2}$ can be calculated by taking the dot product of $\vec{W}$ with $\hat{e_{1}}$ and $\hat{e_{2}}$ respectively.

$$
\begin{aligned}
\vec{W} \cdot \hat{e_{1}} & =\left(W_{1} \hat{e_{1}}+W_{2} \hat{e_{2}}\right) \cdot \hat{e_{1}} \\
& =W_{1}\left(\hat{e_{1}} \cdot \hat{e_{1}}\right)+W_{2}\left(\hat{e_{2}} \cdot \hat{e_{1}}\right) \\
& =W_{1}(1)+W_{2}(0) \\
& =W_{1}
\end{aligned}
$$

Similarly

$$
\vec{W} \cdot \hat{e_{2}}=W_{2}
$$

Thus (2.5.9) can be written in another form as

$$
\begin{equation*}
\vec{W}=\left(\vec{W} \cdot \hat{e_{1}}\right) \hat{e_{1}}+\left(\vec{W} \cdot \hat{e_{2}}\right) \hat{e_{2}} \tag{2.5.10}
\end{equation*}
$$

The vector component $\left(\vec{W} \cdot \hat{e_{1}}\right) \hat{e_{1}}$ of $\vec{W}$ is along $\hat{e_{1}}$ direction and the vector component $\left(\vec{W} \cdot \hat{e_{2}}\right) \hat{e_{2}}$ of $\vec{W}$ is along $\hat{e_{2}}$ direction. Let $\theta$ be the angle between $\vec{W}$ and $\hat{e_{1}}$. Then the orthogonal components of $\vec{W}$ are

$$
\begin{aligned}
W_{1} & =\vec{W} \cdot \hat{e_{1}} \\
& =\|\vec{W}\|\left\|\hat{e_{1}}\right\| \cos \theta \\
& =W(1) \cos \theta \\
& =W \cos \theta
\end{aligned}
$$

The scalar $W$ is the magnitude of $\vec{W}$ and is obtained as

$$
\begin{equation*}
W=\sqrt{W_{1}^{2}+W_{2}^{2}} \tag{2.5.11}
\end{equation*}
$$

And

$$
\begin{aligned}
W_{2} & =\vec{W} \cdot \hat{e_{2}} \\
& =\|\vec{W}\|\left\|\hat{e_{2}}\right\| \cos (90-\theta) \\
& =W(1) \sin \theta \\
& =W \sin \theta
\end{aligned}
$$

Then (2.5.9) can also be written in another form as

$$
\vec{W}=W \cos \theta \hat{i}+W \sin \theta \hat{j}
$$

Example 2.5.3. Consider the vectors $\vec{a}=2 \hat{i}+3 \hat{j}, \hat{e}_{1}=\frac{1}{\sqrt{2}} \hat{i}+\frac{1}{\sqrt{2}} \hat{j}$ and $\hat{e}_{2}=\frac{1}{\sqrt{2}} \hat{i}-\frac{1}{\sqrt{2}} \hat{j}$.
Find
a) The scalar components of $\vec{a}$ along $\hat{e}_{1}$ and $\hat{e}_{2}$ and
b) The vector components of $\vec{a}$ along $\hat{e}_{1}$ and $\hat{e}_{2}$.

## Solution

a) The scalar component of $\vec{a}$ along $\hat{e}_{1}$ is

$$
\begin{aligned}
a_{1} & =\vec{a} \cdot \hat{e_{1}} \\
& =2\left(\frac{1}{\sqrt{2}}\right)+3\left(\frac{1}{\sqrt{2}}\right) \\
& =\frac{5}{\sqrt{2}}
\end{aligned}
$$

And the scalar component of $\vec{a}$ along $\hat{e}_{2}$ is

$$
\begin{aligned}
a_{2} & =\vec{a} \cdot \hat{e_{2}} \\
& =2\left(\frac{1}{\sqrt{2}}\right)+3\left(-\frac{1}{\sqrt{2}}\right) \\
& =-\frac{1}{\sqrt{2}}
\end{aligned}
$$

b) The vector components of $\vec{a}$ along $\hat{e}_{1}$ is

$$
\begin{aligned}
a_{1} \hat{e_{1}} & =\frac{5}{\sqrt{2}}\left(\frac{1}{\sqrt{2}} \hat{i}+\frac{1}{\sqrt{2}} \hat{j}\right) \\
& =\frac{5}{2} \hat{i}+\frac{5}{2} \hat{j}
\end{aligned}
$$

And the vector components of $\vec{a}$ along $\hat{e}_{2}$ is

$$
\begin{aligned}
a_{2} \hat{e_{2}} & =-\frac{1}{\sqrt{2}}\left(\frac{1}{\sqrt{2}} \hat{i}-\frac{1}{\sqrt{2}} \hat{j}\right) \\
& =-\frac{1}{2} \hat{i}+\frac{1}{2} \hat{j}
\end{aligned}
$$

Example 2.5.4. Let the vector $\vec{a}=\langle 2,2\rangle$, makes an angle $\theta=\frac{\pi}{4}$ with $\hat{e}_{1}$. Find the scalar components of $\vec{a}$ along $\hat{e}_{1}$ and $\hat{e}_{2}$.

## Solution

We first need the magnitude of $\vec{a}$, that is

$$
a=\sqrt{(2)^{2}+(2)^{2}}=2 \sqrt{2}
$$

The scalar component of $\vec{a}$ along $\hat{e}_{1}$ is

$$
\begin{aligned}
a_{1} & =a \cos \theta \\
& =2 \sqrt{2} \cos \left(\frac{\pi}{4}\right) \\
& =2 \sqrt{2}\left(\frac{1}{\sqrt{2}}\right)=2
\end{aligned}
$$

The scalar component of $\vec{a}$ along $\hat{e}_{2}$ is

$$
\begin{aligned}
a_{2} & =a \sin \theta \\
& =2 \sqrt{2} \sin \left(\frac{\pi}{4}\right) \\
& =2 \sqrt{2}\left(\frac{1}{\sqrt{2}}\right)=2
\end{aligned}
$$

### 2.5.5 Orthogonal Components of a Vector with Reference to the Origin

This can be discussed in two steps, a vector in 2 - space and a vector in 3 - space. First consider a vector in 2 - space.
(a) Vector in 2 - space

If the initial point of a vector $\vec{r}$ is at origin, in $2-$ space the orthogonal/rectangular components will be along coordinate axes. The component along $x$ axis is called horizontal component of $\vec{r}$ and the component along $y$ axis is called vertical component of $\vec{r}$. If $\vec{r}$ makes an angle $\theta$ with $x$ axis then its orthogonal components are

$$
\begin{aligned}
r_{X} & =r \cos \theta \\
r_{Y} & =r \sin \theta
\end{aligned}
$$

And $\vec{r}$ can be written as


Figure 2.16: Orthogonal components of a vector in 2 space.

$$
\begin{aligned}
\vec{r} & =r_{X} \hat{i}+r_{Y} \hat{j} \\
& =r \cos \theta \hat{i}+r \sin \theta \hat{j}
\end{aligned}
$$

Example 2.5.5. Let a vector $\vec{a}$ in $2-$ space of magnitude 3 makes an angle $\theta=\frac{\pi}{4}$ with $x$ axis. Find $\vec{a}$ from its rectangular components.

## Solution

The given data is

$$
\begin{aligned}
a & =3 \\
\theta & =\frac{\pi}{4}
\end{aligned}
$$

The $x$ component of $\vec{a}$ is

$$
\begin{aligned}
a_{1} & =a \cos \theta \\
& =3 \cos \left(\frac{\pi}{4}\right) \\
& =3(0.707)=2.12
\end{aligned}
$$

The $y$ component of $\vec{a}$ is

$$
\begin{aligned}
a_{2} & =a \sin \theta \\
& =3 \sin \left(\frac{\pi}{4}\right) \\
& =3(0.707)=2.12
\end{aligned}
$$

$\vec{a}$ in the combination of its rectangular component is

$$
\vec{a}=2.12 \hat{i}+2.12 \hat{j}
$$

(b) Vector in $3-$ space

If the initial point of a vector is at origin, in 3-space the orthogonal/rectangular components will be along coordinate axes. Let $\vec{r}$ makes an angle $\phi$ with $z$ axis then its orthogonal components are

$$
\begin{aligned}
r_{Z} & =r \cos \phi \\
r_{V} & =r \sin \phi
\end{aligned}
$$

$\vec{V}$ is the projection of $\vec{r}$ in $x y$ plane. Let it makes an angle $\theta$ with $x$ axis. It will further


Figure 2.17: Vector in 3 space.
decompose into orthogonal components as

$$
\begin{aligned}
r_{X} & =r \sin \phi \cos \theta \\
r_{Y} & =r \sin \phi \sin \theta
\end{aligned}
$$

It provides the idea of spherical coordinates. The rectangular components of $\vec{r}$ are

$$
\begin{aligned}
r_{X} & =r \sin \phi \cos \theta \\
r_{Y} & =r \sin \phi \sin \theta \\
r_{Z} & =r \cos \phi
\end{aligned}
$$



Figure 2.18: Orthogonal components of a vector in 3 space.

And $\vec{r}$ can be written as

$$
\begin{aligned}
\vec{r} & =r_{X} \hat{i}+r_{Y} \hat{j}+r_{Z} \hat{k} \\
& =r \sin \phi \cos \theta \hat{i}+r \sin \phi \sin \theta \hat{j}+r \cos \phi \hat{k}
\end{aligned}
$$

### 2.5.6 Vector or Cross Product of Two Vectors

If $\vec{a}=\left\langle x_{1}, y_{1}, z_{1}\right\rangle$ and $\vec{b}=\left\langle x_{2}, y_{2}, z_{2}\right\rangle$ are vectors in $3-$ space, then the cross product of $\vec{a}$ and $\vec{b}$ is written as $\vec{a} \times \vec{b}$ and is defined as

$$
\begin{align*}
\vec{a} \times \vec{b} & =\left|\begin{array}{ccc}
\hat{i} & \hat{j} & \hat{k} \\
x_{1} & y_{1} & z_{1} \\
x_{2} & y_{2} & z_{2}
\end{array}\right|  \tag{2.5.12}\\
& =\left(y_{1} z_{2}-y_{2} z_{1}\right) \hat{i}-\left(x_{1} z_{2}-x_{2} z_{1}\right) \hat{j}+\left(x_{1} y_{2}-x_{2} y_{1}\right) \hat{k}
\end{align*}
$$

If $\theta$ is the angle between $\vec{a}$ and $\vec{b}$ as shown in Fig. 2.19, then the magnitude of $\vec{a} \times \vec{b}$ is

$$
\|\vec{a} \times \vec{b}\|=a b \sin \theta
$$

Also

$$
A=\|\vec{a} \times \vec{b}\|
$$

is the area of the parallelogram that has $\vec{a}$ and $\vec{b}$ as adjacent sides.
Note

- $\vec{a} \times \vec{b}=-(\vec{b} \times \vec{a})$
- The cross product is defined only for vectors in 3-space, whereas the dot product is defined for vectors in 2 -space and 3 -space.


Figure 2.19: Cross product of two vectors

- The cross product of two vectors is a vector, whereas the dot product of two vectors is a scalar.
- $\vec{r} \times \vec{r}=0$ for any vector $\vec{r}$ in 3 -space.
- $\hat{i} \times \hat{j}=\hat{k}, \hat{j} \times \hat{k}=\hat{i}, \hat{k} \times \hat{i}=\hat{j}$,
$\hat{j} \times \hat{i}=-\hat{k}, \hat{k} \times \hat{j}=-\hat{i}, \hat{i} \times \hat{k}=-\hat{j}$
Example 2.5.6. Let the vector $\vec{a}=\langle 2,-2,1\rangle$, and $\vec{b}=\langle 3,0,1\rangle$ Find
a) $\vec{a} \times \vec{a}$
b) $\vec{a} \times \vec{b}$
c) $\vec{b} \times \vec{a}$
d) Find the area of the parallelogram whose adjacent sides are $\vec{a}$, and $\vec{b}$


## Solution

The vector products can be calculated by using (2.5.12), first
a) $\vec{a} \times \vec{a}$ is

$$
\begin{aligned}
\vec{a} \times \vec{a} & =\left|\begin{array}{ccc}
\hat{i} & \hat{j} & \hat{k} \\
2 & -2 & 1 \\
2 & -2 & 1
\end{array}\right| \\
& =(-2+2) \hat{i}-(2-2) \hat{j}+(-4+4) \hat{k} \\
& =0
\end{aligned}
$$

Hence the vector product of a vector with itself is zero. Next
b) $\vec{a} \times \vec{b}$ is

$$
\begin{aligned}
\vec{a} \times \vec{b} & =\left|\begin{array}{ccc}
\hat{i} & \hat{j} & \hat{k} \\
2 & -2 & 1 \\
3 & 0 & 1
\end{array}\right| \\
& =(-2+0) \hat{i}-(2-3) \hat{j}+(0+6) \hat{k} \\
& =-2 \hat{i}+\hat{j}+6 \hat{k}
\end{aligned}
$$

c) For $\vec{b} \times \vec{a}$, we use the concept $\vec{b} \times \vec{a}=-(\vec{a} \times \vec{b})$. Hence

$$
\begin{aligned}
\vec{b} \times \vec{a} & =-(\vec{a} \times \vec{b}) \\
& =-(-2 \hat{i}+\hat{j}+6 \hat{k}) \\
& =2 \hat{i}-\hat{j}-6 \hat{k}
\end{aligned}
$$

d) The area of the parallelogram is the magnitude of $\vec{a} \times \vec{b}$, that is

$$
\begin{aligned}
\|\vec{a} \times \vec{b}\| & =\sqrt{(-2)^{2}+(1)^{2}+(6)^{2}} \\
& =\sqrt{4+1+36}=\sqrt{41} \\
& \approx 6.4 \text { units }^{2}
\end{aligned}
$$

Hence the area of the parallelogram whose sides are $\vec{a}$ and $\vec{b}$, is 6.4 units $^{2}$

### 2.6 Scalar or Dot Product of Three Vectors

If $\vec{a}=\left\langle x_{1}, y_{1}, z_{1}\right\rangle, \vec{b}=\left\langle x_{2}, y_{2}, z_{2}\right\rangle$ and $\vec{c}=\left\langle x_{3}, y_{3}, z_{3}\right\rangle$ are vectors in $3-$ space, then the scalar product of three vectors is a number written as $\vec{a} \cdot(\vec{b} \times \vec{c})$ and is defined as

$$
\vec{a} \cdot(\vec{b} \times \vec{c})=\left|\begin{array}{lll}
x_{1} & y_{1} & z_{1}  \tag{2.6.1}\\
x_{2} & y_{2} & z_{2} \\
x_{3} & y_{3} & z_{3}
\end{array}\right|
$$

If $\vec{a}, \vec{b}$ and $\vec{c}$ are adjacent edges of the parallelepiped, as shown in Fig. 2.20, then the magnitude of $\vec{a} \cdot(\vec{b} \times \vec{c})$ is is volume $V$ of the parallelepiped.

$$
V=|\vec{a} \cdot(\vec{b} \times \vec{c})|
$$

## Note



Figure 2.20: scalar triple product is volume of parallelepiped

- If $\vec{a} \cdot(\vec{b} \times \vec{c})=0$ then the three vectors are coplanar.
- If $\vec{a} \cdot(\vec{a} \times \vec{b})=0$ then $\vec{a} \times \vec{b}$ is orthogonal to $\vec{a}$.
- $\vec{b} \cdot(\vec{a} \times \vec{b})=0$ then $\vec{a} \times \vec{b}$ is orthogonal to $\vec{b}$.

Example 2.6.1. Find the triple dot product of the vectors $\vec{a}=\langle 3,2,1\rangle, \vec{b}=\langle 2,1,1\rangle$ and $\vec{c}=\langle 1,2,4\rangle$. Also find the volume of the parallelepiped whose edges are $\vec{a}, \vec{b}$ and $\vec{c}$.

## Solution

The triple dot product of vectors is given by using (2.6.1)

$$
\begin{aligned}
\vec{a} \cdot(\vec{b} \times \vec{c}) & =\left|\begin{array}{lll}
3 & 2 & 1 \\
2 & 1 & 1 \\
1 & 2 & 4
\end{array}\right| \\
& =3(4-2)-2(8-1)+1(4-1) \\
& =6-14+3=-5
\end{aligned}
$$

The volume of the parallelepiped with edges $\vec{a}, \vec{b}$ and $\vec{c}$ is

$$
\begin{aligned}
V & =|\vec{a} \cdot(\vec{b} \times \vec{c})| \\
& =5 \text { units }^{3}
\end{aligned}
$$

### 2.7 Addition of Vectors

Two or more vectors can be added geometrically (graphically) and analytically. Following methods can be used to add vectors.

### 2.7.1 Head to Tail Rule of Vector Addition

Given two vectors $\vec{P}$ and $\vec{Q}$. Their resultant $\vec{P}+\vec{Q}$ is obtained by joining the tail of $\vec{Q}$ with the head of $\vec{P}$ without making any alteration in the direction of vectors. Draw a vector from the tail of $\vec{P}$ to the head of $\vec{Q}$. This vector is $\vec{P}+\vec{Q}$. Also we can obtain $\vec{Q}+\vec{P}$, the same vector, let it be $\vec{R}$. Hence we can say

$$
\vec{R}=\vec{P}+\vec{Q}=\vec{Q}+\vec{P}
$$

This means vector addition is commutative. Geometrically this sum is illustrated in Fig.


Figure 2.21: Vector addition by head to tail rule
3.1, on left side two vectors are acting in same directions and on right side two vectors are not acting in same directions. The length of $\vec{P}+\vec{Q}$ is the magnitude and its inclination with $\vec{P}$ is its direction.
Any number of vectors can be added by this method. For two adjacent vectors we can apply triangular law and for more than two vectors we can apply polygon law.

### 2.7.2 Triangle Law of Vector Addition

If two vectors are represented in magnitude and direction by two sides of a triangle taken in order, then their resultant is the closing side of the triangle taken in the opposite order.
Proof Two vectors $\vec{P}$ and $\vec{Q}$ are represented completely by two sides $O A$ and $A B$ of a triangle $O A B$. Then by vector addition (head to tail rule) the resultant vector $\vec{R}$ of two vectors $\vec{P}$ and $\vec{Q}$ is

$$
\vec{R}=\vec{P}+\vec{Q}
$$

Geometrically this sum is illustrated in Fig. 3.4. The length of $\vec{R}$ is the magnitude and its inclination with $\vec{P}$ is its direction.

### 2.7.3 Polygon Law of Vector Addition

The triangle rule can be made more general to apply to any geometrical shape - or polygon. This then becomes the polygon law. It can be stated as:


Figure 2.22: Vector addition by triangular law

If a number of vectors are represented both in magnitude and direction by the sides of a polygon taken in the same order, then their resultant is represented both in magnitude and direction by the closing side of the polygon taken in the opposite order.
Proof Four vectors $\vec{F}_{1}, \vec{F}_{2}, \vec{F}_{3}$ and $\vec{F}_{4}$ are represented by four sides $O A . A B, B C$ and $C D$ of a polygon $O A B C D$. Then by vector addition (head to tail rule) the resultant vector $\vec{R}$ of four vectors is

$$
\vec{R}=\vec{F}_{1}+\vec{F}_{2}+\vec{F}_{3}+\vec{F}_{4}
$$

Geometrically this sum is illustrated in Fig. 3.7. The length of $\vec{R}$ is the magnitude and its


Figure 2.23: Vector addition by polygon law
inclination with $\vec{F}_{1}$ is its direction.
Since vector addition is associative, the resultant vector obtained by the polygon rule is independent of the order of composition of vectors.

### 2.7.4 Subtraction of vectors

The subtraction of a vector from another is a vector obtained by adding one vector to the negative of the other. It is also called difference of vectors.

Given two vectors $\vec{P}$ and $\vec{Q}$. Their difference $\vec{P}-\vec{Q}$ is obtained by joining the tail of $-\vec{Q}$ with the head of $\vec{P}$ without making any alteration in the direction of vectors. Draw a vector from the tail of $\vec{P}$ to the head of $-\vec{Q}$. This vector is $\vec{R}=\vec{P}-\vec{Q}$.

$$
\vec{R}=\vec{P}-\vec{Q}=\vec{P}+(-\vec{Q})
$$

Geometrically this difference vector is illustrated in Fig. 3.8, on left side the two vectors are parallel and on right side the two vectors are not parallel. The length of $\vec{R}$ is the magnitude


Figure 2.24: Subtraction of two vectors.
and its inclination with $\vec{P}$ is its direction.

### 2.7.5 Parallelogram Law of Vector Addition

If two vectors are represented in magnitude and direction by two adjacent sides of a parallelogram, then their resultant is represented in magnitude and direction by the diagonal of the parallelogram, passing through the point of intersection of the vectors as shown in Fig. 3.13. and is given by (3.4.1)


Figure 2.25: Parallelogram of vectors

$$
\begin{equation*}
\vec{R}=\vec{P}+\vec{Q} \tag{2.7.1}
\end{equation*}
$$

And by law of sines, the magnitude of the resultant is

$$
\begin{equation*}
\frac{R}{\sin (\pi-\alpha)}=\frac{P}{\sin \phi}=\frac{Q}{\sin \theta} \tag{2.7.2}
\end{equation*}
$$

And by law of cosines, the magnitude of the resultant is

$$
\begin{equation*}
R=\sqrt{P^{2}+Q^{2}+2 P Q \cos \alpha} \tag{2.7.3}
\end{equation*}
$$

where $\alpha$ is the angle between these two vectors. The resultant makes an angle $\theta$ with the horizontal vector.

$$
\begin{equation*}
\tan \theta=\frac{Q \sin \alpha}{P+Q \cos \alpha} \tag{2.7.4}
\end{equation*}
$$

Note: We usually refer (3.4.2) for magnitude of the resultant.
Proof The two vectors $\vec{P}$ and $\vec{Q}$ are represented completely by two adjacent sides $O A$ and $O C$ of a parallelogram $O A B C$. The vector $\vec{Q}$ can be represented by $A B$ side, then by vector addition (head to tail rule) the resultant vector $\vec{R}$ of two vectors $\vec{P}$ and $\vec{Q}$ is

$$
\vec{R}=\vec{P}+\vec{Q}
$$

In Fig. 3.12, a triangle $O A B$ is formed by three vectors $\vec{P}, \vec{Q}, \vec{R}$. In this triangle,


Figure 2.26: Triangle of vectors
$\angle A=\pi-\alpha, \angle O=\theta$, and $\angle B=\phi$, then by law of sines we can write

$$
\frac{R}{\sin (\pi-\alpha)}=\frac{P}{\sin \phi}=\frac{Q}{\sin \theta}
$$

Again consider triangle $O A B$, by law of cosines we can write

$$
\begin{aligned}
\cos (\angle O A B) & =\frac{|\overline{O A}|^{2}+|\overline{A B}|^{2}-|\overline{O B}|^{2}}{2|\overline{O A}||\overline{A B}|} \\
\cos (\pi-\alpha) & =\frac{P^{2}+Q^{2}-R^{2}}{2 P Q} \\
-\cos \alpha & =\frac{P^{2}+Q^{2}-R^{2}}{2 P Q} \\
-2 P Q \cos \alpha & =P^{2}+Q^{2}-R^{2}
\end{aligned}
$$

Then $R$ can be written as

$$
R=\sqrt{P^{2}+Q^{2}+2 P Q \cos \alpha}
$$

Draw a perpendicular $B D$ from $B$ on $O A$, which meets $O A$ at $D$ produced. In right angle triangle $A D B$

$$
\cos \alpha=\frac{|\overline{A D}|}{|\overline{A B}|}
$$

then

$$
\begin{align*}
|\overline{A D}| & =|\overline{A B}| \cos \alpha \\
& =Q \cos \alpha \tag{2.7.5}
\end{align*}
$$

Similarly

$$
\begin{equation*}
|\overline{B D}|=Q \sin \alpha \tag{2.7.6}
\end{equation*}
$$

Let the resultant $\vec{R}$ makes an angle $\theta$ with the vector $\vec{P}$ as shown in Fig. 3.13. In right angle triangle $O D B, \angle B O D=\theta$, then

$$
\begin{equation*}
\tan \theta=\frac{|\overline{B D}|}{|\overline{O B}|} \tag{2.7.7}
\end{equation*}
$$

Since

$$
|\overline{O D}|=|\overline{O A}|+|\overline{A D}|
$$

then (3.4.6) becomes

$$
\begin{equation*}
\tan \theta=\frac{|\overline{B D}|}{|\overline{O A}|+|\overline{A D}|} \tag{2.7.8}
\end{equation*}
$$

Using (3.4.4) and (3.4.5), (3.4.7) becomes

$$
\tan \theta=\frac{Q \sin \alpha}{P+Q \cos \alpha}
$$

or

$$
\begin{equation*}
\theta=\arctan \left(\frac{Q \sin \alpha}{P+Q \cos \alpha}\right) \tag{2.7.9}
\end{equation*}
$$

If the resultant $\vec{R}$ makes an angle $\theta$ with the vector $\vec{Q}$, the resultant will remain the same, but in (3.4.8), $P$ and $Q$ will interchange.
Particular Cases Here some particular cases can be discussed for different values of the angle between the vectors.


Figure 2.27: Vectors acting in the same direction

Case 1: If the two vectors are acting in the same direction, then the angle between them is $\alpha=0 \mathrm{rad}$, as shown in Fig. 3.14 and by (3.4.2), their resultant is

$$
\begin{aligned}
R & =\sqrt{P^{2}+Q^{2}+2 P Q \cos (0)} \\
& =\sqrt{P^{2}+Q^{2}+2 P Q} \\
& =\sqrt{(P+Q)^{2}} \\
& =P+Q
\end{aligned}
$$

(3.4.9) gives the magnitude of the resultant. For direction, consider (3.4.3)

$$
\begin{align*}
\tan \theta & =\frac{Q \sin (0)}{P+Q \cos (0)} \\
& =0 \tag{2.7.10}
\end{align*}
$$

(3.4.10) gives the direction of the resultant. In this case the magnitude of the resultant of the vectors is the sum of the individual magnitudes of the vectors and it acts in the direction of the vectors resultant is known as resultant of greatest magnitude.

Case 2: If the two vectors are perpendicular, then the angle between them is $\alpha=\frac{\pi}{2} \mathrm{rad}$, as shown in Fig. 3.15 and by (3.4.2), their resultant is


Figure 2.28: Vectors are orthogonal

$$
\begin{align*}
R & =\sqrt{P^{2}+Q^{2}+2 P Q \cos \left(\frac{\pi}{2}\right)} \\
& =\sqrt{P^{2}+Q^{2}} \tag{2.7.11}
\end{align*}
$$

(3.4.11) gives the magnitude of the resultant, when the two vectors acting on a body are perpendicular. For direction, consider (3.4.3)

$$
\begin{align*}
\tan \theta & =\frac{Q \sin \left(\frac{\pi}{2}\right)}{P+Q \cos \left(\frac{\pi}{2}\right)} \\
& =\frac{Q}{P} \tag{2.7.12}
\end{align*}
$$

(3.4.12) gives the direction of the resultant.

Case 3: If the two vectors are acting in the opposite direction, then the angle between them is $\alpha=\pi \mathrm{rad}$, and by (3.4.2), their resultant is

$$
\begin{align*}
R & =\sqrt{P^{2}+Q^{2}+2 P Q \cos (\pi)} \\
& =\sqrt{P^{2}+Q^{2}-2 P Q} \\
& =\sqrt{(P-Q)^{2}} \\
& =|P-Q| \tag{2.7.13}
\end{align*}
$$

(3.4.13) gives the magnitude of the resultant, when the vectors are acting in opposite direction, as shown in Fig. 3.16. For direction, consider (3.4.3)


Figure 2.29: Vectors acting in opposite direction

$$
\begin{aligned}
\tan \theta & =\frac{Q \sin (\pi)}{P+Q \cos (\pi)} \\
& =0
\end{aligned}
$$

and

$$
\begin{equation*}
\theta=0 \text { or } \pi \tag{2.7.14}
\end{equation*}
$$

(3.4.14) gives the direction of the resultant. In this case the magnitude of the resultant of the vectors is the difference of the individual magnitudes of the vectors and it acts in the direction of a forces with greater magnitude. This resultant is known as resultant of least magnitude.

### 2.7.6 Resolved Components of a Vector in Two given Directions

Let $\vec{R}$ be a given vector and $\vec{P}$ and $\vec{Q}$ be its resolved parts making angles $\theta$ and $\phi$ with it. Completing parallelogram $O A C B$ as shown in Fig. 3.28. In this figure, consider the triangle $O A B$, in which the sides $O A, A B$ and $O B$ represents the forces $P, Q$ and $R$ in magnitude respectively. Then by law of sine's we have


Figure 2.30: Resolved components of a vector in two given directions

$$
\frac{R}{\sin (\pi-\alpha)}=\frac{P}{\sin \phi}=\frac{Q}{\sin \theta}
$$

and we can write

$$
\begin{equation*}
P=\frac{R \sin \phi}{\sin (\pi-\alpha)} \tag{2.7.15}
\end{equation*}
$$

and

$$
\begin{equation*}
Q=\frac{R \sin \theta}{\sin (\pi-\alpha)} \tag{2.7.16}
\end{equation*}
$$

Then $P$ and $Q$ given by (3.5.1) and (3.5.3) respectively gives the magnitudes of resolved parts of a vector.
If the angle between the forces $\alpha=\frac{\pi}{2}$, then $\phi=\frac{\pi}{2}-\theta$,

$$
\sin (\pi-\alpha)=\sin \left(\frac{\pi}{2}\right)
$$

and

$$
\sin \phi=\sin \left(\frac{\pi}{2}-\theta\right)=\cos \theta
$$

Then the resolved components of a vector are

$$
\begin{equation*}
P=R \cos \theta \tag{2.7.17}
\end{equation*}
$$



Figure 2.31: Resolved components of a vector in orthogonal directions
and

$$
\begin{equation*}
Q=R \sin \theta \tag{2.7.18}
\end{equation*}
$$

are known as rectangular components of a vector and are shown in Fig. 3.31.

Example 2.7.1. Consider two vectors with magnitudes $3 N$ and $4 N$ and angle between them is 60 degrees. Find their resultant vector using parallelogram law of vectors.

Solution: Let

$$
\begin{aligned}
P & =3 N \\
Q & =4 N
\end{aligned}
$$

and the angle between them is

$$
\alpha=60^{\circ}
$$

Using (3.4.2), the resultant is

$$
\begin{aligned}
R & =\sqrt{3^{2}+4^{2}+2 \cos 60} \\
& =\sqrt{9+16+1} \\
& =\sqrt{26} \approx 5.099 N
\end{aligned}
$$

Let $P$ is the initial vector and $Q$ is the terminal vector, then using (3.4.3), the angle of resultant with $P$ is

$$
\begin{aligned}
\theta & =\arctan \left(\frac{4 \sin (60)}{3+4 \cos (60)}\right) \\
& =\arctan \left(\frac{3.4641}{5}\right) \\
& =\arctan (0.6928)=34.72^{\circ} \approx 35^{\circ}
\end{aligned}
$$

The resultant makes an angle $\theta=35^{\circ}$ with force $P$.

Theorem 2.7.1. If $A$ and $B$ are two points having position vectors $\vec{a}$ and $\vec{b}$ in a system with $O$ as origin. Next $C$ is a point which divides $A B$ in ratio $\lambda: \mu$, then show that position vector of $C$ relative to $O$ is

$$
\begin{equation*}
\vec{c}=\frac{\mu \vec{a}+\lambda \vec{b}}{\lambda+\mu} \tag{2.7.19}
\end{equation*}
$$

Proof This theorem is also known as $\lambda, \mu$ theorem of vector addition.
Two points $A$ and $B$ having position vectors $\vec{a}$ and $\vec{b}$ relative to $O$ are shown in Fig. 3.27. If $C$ divides $A B$ in ratio $\lambda: \mu$, then from Fig. 3.27, we can write


Figure 2.32: $\lambda \mu$ Theorem.

$$
A C=\frac{\lambda}{\lambda+\mu} A B
$$

Hence

$$
\begin{equation*}
\overrightarrow{A C}=\frac{\lambda}{\lambda+\mu} \overrightarrow{A B} \tag{2.7.20}
\end{equation*}
$$

Following head to tail rule of vector addition, $\overrightarrow{O B}$ can be written as a sum of $\overrightarrow{O A}$ and $\overrightarrow{A B}$ (see Fig. 3.27). Then

$$
\begin{equation*}
\overrightarrow{A B}=\overrightarrow{O B}-\overrightarrow{O A} \tag{2.7.21}
\end{equation*}
$$

Using (3.4.23), (3.4.22) can be written as

$$
\begin{equation*}
\overrightarrow{A C}=\frac{\lambda}{\lambda+\mu}(\overrightarrow{O B}-\overrightarrow{O A}) \tag{2.7.22}
\end{equation*}
$$

Again following head to tail rule of vector addition, $\overrightarrow{O C}$ can be written as (see Fig. 3.27)

$$
\begin{equation*}
\overrightarrow{O C}=\overrightarrow{O A}+\overrightarrow{A C} \tag{2.7.23}
\end{equation*}
$$



Figure 2.33: Vector addition by head to tail rule.

Since $\overrightarrow{O A}=\vec{a}, \overrightarrow{O B}=\vec{b}$ and $\overrightarrow{O C}=\vec{c}$ is given by (3.4.24). Then (3.4.25) becomes

$$
\begin{aligned}
\vec{c} & =\vec{a}+\frac{\lambda}{\lambda+\mu}(\vec{b}-\vec{a}) \\
& =\frac{(\lambda+\mu-\lambda) \vec{a}+\lambda \vec{b}}{\lambda+\mu} \\
& =\frac{\mu \vec{a}+\lambda \vec{b}}{\lambda+\mu}
\end{aligned}
$$

Hence the result.
Special case: When $\lambda=\mu$, then $C$ is the mid point of $A B$ and $\vec{c}$ is

$$
\vec{c}=\frac{\vec{a}+\vec{b}}{2}
$$

Example 2.7.2. In triangle $O A B, \overrightarrow{O A}=\vec{a}$ and $\overrightarrow{O B}=\vec{b}$ as shown in Fig. 3.25. If $C$


Figure 2.34: triangle of vectors
divides the line $A B$ in ratio $1: 2$ and $D$ divides the line $O B$ in ratio $1: 2$. Find $\overrightarrow{D C}$ and
hence show that $\overrightarrow{D C}$ is parallel to $\overrightarrow{O A}$.
Solution Following $\lambda, \mu$ theorem, the sum of $\overrightarrow{O A}$ and $\overrightarrow{O B}$ is $\overrightarrow{O C}$ as shown in Fig. 3.26 (a) with $\lambda=1, \mu=2$. Hence $\overrightarrow{O C}$ is

$$
\overrightarrow{O C}=\frac{2 \vec{a}+\vec{b}}{3}
$$

In Fig. 3.26 (b) $\overrightarrow{D O}$ is

(a)

(b)

Figure 2.35: Vector addition by head to tail rule.

$$
\overrightarrow{D O}=-\frac{1}{3} \vec{b}
$$

following head to tail rule of vector addition, in Fig. 3.26 (b) $\overrightarrow{D C}$ can be written as

$$
\begin{aligned}
\overrightarrow{D C} & =\overrightarrow{D O}+\overrightarrow{O C} \\
& =-\frac{1}{3} \vec{b}+\frac{2}{3} \vec{a}+\frac{1}{3} \vec{b} \\
& =\frac{2}{3} \vec{a}
\end{aligned}
$$

Since $\overrightarrow{D C}$ is a scalar multiple of $\vec{a}$ and is acting in the direction of $\vec{a}$; that is $\overrightarrow{D C}$ is parallel to $\overrightarrow{O A}$.

### 2.8 Resultant of Coplanar Vectors

Following subsection 2.5.4, the rectangular components of a vector can be obtained. The rectangular components of resultant vector of two or more coplanar vectors can be obtained by summing rectangular components of individual vectors. For two dimensional system, the horizontal components of resultant vector of two or more vectors is the sum of horizontal components of individual vectors and the vertical components of resultant vector of two or more vectors is the sum of vertical components of individual vectors. First consider a system of two vectors in $2-$ space.

### 2.8.1 Resultant of Two Coplanar Vectors

Consider two coplanar vectors $\vec{P}$ and $\vec{Q}$ as shown in Fig. 3.34. Their representations in


Figure 2.36: Two coplanar vectors.
rectangular components are

$$
\vec{P}=P_{X} \hat{i}+P_{Y} \hat{j}
$$

and

$$
\vec{Q}=Q_{X} \hat{i}+Q_{Y} \hat{j}
$$

Then by vector addition (head to tail rule) the resultant vector $\vec{R}$ of two vectors $\vec{P}$ and $\vec{Q}$ is

$$
\begin{equation*}
\vec{R}=\vec{P}+\vec{Q} \tag{2.8.1}
\end{equation*}
$$

$\vec{R}$ in rectangular components is

$$
\vec{R}=R_{X} \hat{i}+R_{Y} \hat{j}
$$

In rectangular components, (3.6.1) can be written as

$$
\begin{aligned}
R_{X} \hat{i}+R_{Y} \hat{j} & =\left(P_{X} \hat{i}+P_{Y} \hat{j}\right)+\left(Q_{X} \hat{i}+Q_{Y} \hat{j}\right) \\
& =\left(P_{X}+Q_{X}\right) \hat{i}+\left(P_{Y}+Q_{Y}\right) \hat{j}
\end{aligned}
$$

Comparing components, we have

$$
R_{X}=P_{X}+Q_{X}
$$

The horizontal component of resultant is sum of horizontal components of individual vectors. And

$$
R_{Y}=P_{Y}+Q_{Y}
$$

the vertical component of resultant is sum of vertical components of individual vectors. The magnitude of resultant is

$$
\begin{equation*}
R=\sqrt{R_{X}^{2}+R_{Y}^{2}} \tag{2.8.2}
\end{equation*}
$$

And the direction is

$$
\begin{equation*}
\theta=\arctan \left(\frac{R_{Y}}{R_{X}}\right) \tag{2.8.3}
\end{equation*}
$$

Geometrically this sum is illustrated in Fig. 3.35. The length of $\vec{R}$ is the magnitude and



Figure 2.37: Addition of two coplanar vectors.
its inclination with horizontal is its direction.

### 2.8.2 Resultant of $n$ Coplanar Vectors

For $n$ coplanar vectors $\vec{F}_{1}, \vec{F}_{2}, \ldots \vec{F}_{n}$, the rectangular components of resultant vector are

$$
R_{X}=F_{1 X}+F_{2 X}+\ldots+F_{n X}=\sum_{i=1}^{n} F_{i X}
$$

And

$$
R_{Y}=F_{1 Y}+F_{2 Y}+\ldots+F_{n Y}=\sum_{i=1}^{n} F_{i Y}
$$

The magnitude and direction of resultant vector can be calculated by using (3.6.2) and (3.6.3) respectively.

### 2.8.3 Resultant of $n$ Non-coplanar Vectors

Next consider a system of $n$ vectors $\vec{F}_{1}, \vec{F}_{2}, \ldots \vec{F}_{n}$ in $3-$ space .
The rectangular components of resultant vector are

$$
\begin{aligned}
R_{X} & =F_{1 X}+F_{2 X}+\ldots+F_{n X}=\sum_{i=1}^{n} F_{i X} \\
R_{Y} & =F_{1 Y}+F_{2 Y}+\ldots+F_{n Y}=\sum_{i=1}^{n} F_{i Y}
\end{aligned}
$$

And

$$
R_{Z}=F_{1 Z}+F_{2 Z}+\ldots+F_{n Z}=\sum_{i=1}^{n} F_{i Z}
$$

The magnitude of resultant is

$$
\begin{equation*}
R=\sqrt{R_{X}^{2}+R_{Y}^{2}+R_{Z}^{2}} \tag{2.8.4}
\end{equation*}
$$

If the resultant $R$ makes angles $\alpha$ with $x$ axis, $\beta$ with $y$ axis and $\gamma$ with $z$ axis, then direction cosines are

$$
\begin{aligned}
\cos \alpha & =\frac{R_{X}}{R} \\
\cos \beta & =\frac{R_{Y}}{R}
\end{aligned}
$$

and

$$
\cos \gamma=\frac{R_{Z}}{R}
$$

which will help to determine the direction of the resultant.

### 2.9 Resultant of Concurrent and Coplanar Vectors

Following subsection 2.5.4, the rectangular components of a vector can be obtained. The rectangular components of resultant vector of two or more concurrent and coplanar vectors can be obtained by summing rectangular components of individual vectors. For two dimensional system, the horizontal components of resultant vector of two or more vectors is the sum of horizontal components of individual vectors and the vertical components of resultant vector of two or more vectors is the sum of vertical components of individual vectors. First consider a system of two vectors in $2-$ space.

### 2.9.1 Resultant of Two Concurrent and Coplanar Vectors

Consider two concurrent and coplanar vectors $\vec{P}$ and $\vec{Q}$. Let their point of application is origin $O$ of cartesian coordinate system. Vector $\vec{P}$ makes an angle $\alpha_{1}$ and vector $\vec{Q}$ makes an angle $\alpha_{2}$ with $x$ axis as shown in Fig. 3.36. Their representations in rectangular


Figure 2.38: Resultant of two concurrent and coplanar vectors
components are

$$
\begin{aligned}
\vec{P} & =P_{X} \hat{i}+P_{Y} \hat{j} \\
& =P \cos \alpha_{1} \hat{i}+P \sin \alpha_{1} \hat{j}
\end{aligned}
$$

and

$$
\begin{aligned}
\vec{Q} & =Q_{X} \hat{i}+Q_{Y} \hat{j} \\
& =Q \cos \alpha_{2} \hat{i}+Q \sin \alpha_{2} \hat{j}
\end{aligned}
$$

If $\vec{R}$ is their resultant making an angle $\theta$ with $x$ axis as shown in Fig. 3.36 and is given by (3.6.1). Its representation in rectangular components is

$$
\begin{aligned}
\vec{R} & =R_{X} \hat{i}+R_{Y} \hat{j} \\
& =R \cos \theta \hat{i}+R \sin \theta \hat{j}
\end{aligned}
$$

In rectangular components, (3.6.1) can be written as

$$
\begin{aligned}
R_{X} \hat{i}+R_{Y} \hat{j} & =\left(P_{X} \hat{i}+P_{Y} \hat{j}\right)+\left(Q_{X} \hat{i}+Q_{Y} \hat{j}\right) \\
& =\left(P_{X}+Q_{X}\right) \hat{i}+\left(P_{Y}+Q_{Y}\right) \hat{j}
\end{aligned}
$$

Comparing components, we have

$$
\begin{aligned}
R_{X} & =P_{X}+Q_{X} \\
& =P \cos \alpha_{1}+Q \cos \alpha_{2}
\end{aligned}
$$

The horizontal component of resultant is sum of horizontal components of individual vectors. And

$$
\begin{aligned}
R_{Y} & =P_{Y}+Q_{Y} \\
& =P \sin \alpha_{1}+Q \sin \alpha_{2}
\end{aligned}
$$

the vertical component of resultant is sum of vertical components of individual vectors. The length of $\vec{R}$ is the magnitude and its inclination with $x$ axis is its direction can be calculated by using (3.6.2) and (3.6.3) respectively.

### 2.9.2 Resultant of $n$ Concurrent and Coplanar Vectors

For $n$ vectors $\vec{F}_{1}, \vec{F}_{2}, \ldots \vec{F}_{n}$ making angles $\alpha_{1}, \alpha_{2}, \ldots \alpha_{n}$ with $x$ axis as shown in Fig. 3.37. If $\vec{R}$ is their resultant making an angle $\theta$ with $x$ axis as shown in Fig. 3.37. Rectangular


Figure 2.39: Resultant of $n$ concurrent and coplanar vectors
components of resultant vector are

$$
\begin{aligned}
R_{X} & =F_{1 X}+F_{2 X}+\ldots+F_{n X}=\sum_{i=1}^{n} F_{i X} \\
R \cos \theta & =F_{1} \cos \alpha_{1}+F_{2} \cos \alpha_{2}+\ldots+F_{n X} \cos \alpha_{n}=\sum_{i=1}^{n} F_{i} \cos \alpha_{i}
\end{aligned}
$$

And

$$
\begin{aligned}
R_{Y} & =F_{1 Y}+F_{2 Y}+\ldots+F_{n Y}=\sum_{i=1}^{n} F_{i Y} \\
R \sin \theta & =F_{1} \sin \alpha_{1}+F_{2} \sin \alpha_{2}+\ldots+F_{n X} \sin \alpha_{n}=\sum_{i=1}^{n} F_{i} \sin \alpha_{i}
\end{aligned}
$$

The magnitude and direction of resultant vector can be calculated by using (3.6.2) and (3.6.3) respectively.

Example 2.9.1. A boat is rowed at a velocity of $12 \mathrm{~km} / \mathrm{h}$ across a river. The velocity of stream is $8 \mathrm{~km} / \mathrm{h}$. Determine the resultant velocity of the boat.

Solution: Fix the starting point of boat as origin $O$. Mark the downstream as horizontal axis and across the river as vertical axis. Accordingly the boat will move vertically, but as the velocity of the stream joins, as a result it will move making an angle $\theta$ with $x$ axis as shown in the Fig. 2.40. It means velocity of the boat will be vertical component and


Figure 2.40: Resultant of two concurrent and coplanar velocities
velocity of the river will be the horizontal component of the resultant velocity.

$$
\begin{aligned}
& v_{X}=5 \mathrm{~km} / \mathrm{h} \\
& v_{Y}=12 \mathrm{~km} / \mathrm{h}
\end{aligned}
$$

The resultant can be obtained by using addition of vectors by rectangular components. Using (3.6.2) magnitude of resultant velocity is

$$
\begin{aligned}
v & =\sqrt{\left(v_{X}\right)^{2}+\left(v_{Y}\right)^{2}} \\
& =\sqrt{(5)^{2}+(12)^{2}} \\
& =\sqrt{169} \\
& =13 \mathrm{~km} / \mathrm{h}
\end{aligned}
$$

Let the resultant velocity makes an angle $\theta$ with $x$ axis. Using (3.6.3) direction of resultant velocity is

$$
\begin{aligned}
\theta & =\arctan \left(\frac{v_{Y}}{v_{X}}\right) \\
& =\arctan \left(\frac{12}{5}\right)=\arctan (2.4) \\
& \simeq 1.17 \mathrm{rad} \simeq 71^{\circ}
\end{aligned}
$$

### 2.10 Resultant of Three Concurrent and Non-coplanar Vectors

Consider three concurrent and non-coplanar vectors $\vec{a}, \vec{b}$ and $\vec{c}$. Let their point of application is origin $O$. Complete the parallelepiped $O A B C D E F G$ whose edges $O A, O B$ and $O C$ represents the vectors $\vec{a}, \vec{b}$ and $\vec{c}$ respectively as shown in Fig. 2.41. Consider parallelogram


Figure 2.41: Three concurrent and non-coplanar vectors
$O A F B$, whose two adjacent sides $O A$ and $O B$ represents the vectors $\vec{a}$ and $\vec{b}$. Then by law of parallelogram of vector addition, $O F$ represents the sum of $\vec{a}$ and $\vec{b}$. Let it be $\vec{u}$. Next consider parallelogram $O F G C$, whose two adjacent sides $O F$ and $O C$ represents the


Figure 2.42: Addition of three concurrent and non-coplanar vectors
vectors $\vec{u}$ and $\vec{c}$. Then by law of parallelogram of vector addition, $O G$ represents the sum of $\vec{u}$ and $\vec{c}$. Let it be $\vec{R}$.
Hence the resultant of three concurrent and non-coplanar vectors, acting at $O$, is represented by the diagonal, drawn through $O$, of a parallelepiped with the given vectors for its edges.

Theorem 2.10.1. For any vectors $\vec{a}, \vec{b}$ and $\vec{c}$ and any scalars $k$ and $l$, the following relationships hold:
(a) $\vec{a}+\vec{b}=\vec{b}+\vec{a}$
(b) $(\vec{a}+\vec{b})+\vec{c}=\vec{a}+(\vec{b}+\vec{c})$
(c) $\vec{a}+\overrightarrow{0}=\overrightarrow{0}+\vec{a}=\vec{a}$
(d) $\vec{a}+(-\vec{a})=\overrightarrow{0}$
(e) $k(l \vec{a})=(k l) \vec{a}$
(f) $k(\vec{a}+\vec{b})=k \vec{a}+k \vec{b}$
(g) $(k+l) \vec{a}=k \vec{a}+l \vec{a}$
(h) $1 \vec{a}=\vec{a}$

Proof The results in this theorem can be proved algebraically by using components. Let $\vec{a}=\left\langle x_{1}, y_{1}\right\rangle, \vec{b}=\left\langle x_{2}, y_{2}\right\rangle, \vec{c}=\left\langle x_{3}, y_{3}\right\rangle$ and $\overrightarrow{0}=\langle 0,0\rangle$ be vectors in $2-$ space.
(a) $\vec{a}+\vec{b}=\vec{b}+\vec{a}$

Consider left hand side

$$
\begin{aligned}
\vec{a}+\vec{b} & =\left\langle x_{1}, y_{1}\right\rangle+\left\langle x_{2}, y_{2}\right\rangle \\
& =\left\langle x_{1}+x_{2}, y_{1}+y_{2}\right\rangle
\end{aligned}
$$

Since commutative law holds in $\mathbb{R}$ (set of real numbers), so we can write

$$
\begin{aligned}
\vec{a}+\vec{b} & =\left\langle x_{2}+x_{1}, y_{2}+y_{1}\right\rangle \\
& =\left\langle x_{2}, y_{2}\right\rangle+\left\langle x_{1}, y_{1}\right\rangle \\
& =\vec{b}+\vec{a}
\end{aligned}
$$

Geometrically this result is illustrated in Fig. 2.43
(b) $(\vec{a}+\vec{b})+\vec{c}=\vec{a}+(\vec{b}+\vec{c})$


Figure 2.43: Vector addition is commutative

Consider left hand side

$$
\begin{aligned}
(\vec{a}+\vec{b})+\vec{c} & =\left(\left\langle x_{1}, y_{1}\right\rangle+\left\langle x_{2}, y_{2}\right\rangle\right)+\left\langle x_{3}, y_{3}\right\rangle \\
& =\left\langle x_{1}+x_{2}, y_{1}+y_{2}\right\rangle+\left\langle x_{3}, y_{3}\right\rangle \\
& =\left\langle\left(x_{1}+x_{2}\right)+x_{3},\left(y_{1}+y_{2}\right)+y_{3}\right\rangle
\end{aligned}
$$

Since associative law holds in $\mathbb{R}$, so we can write

$$
\begin{aligned}
& =\left\langle x_{1}+\left(x_{2}+x_{3}\right), y_{1}+\left(y_{2}+y_{3}\right)\right\rangle \\
& =\left\langle x_{1}, y_{1}\right\rangle+\left\langle x_{2}+x_{3}, y_{2}+y_{3}\right\rangle \\
& =\vec{a}+(\vec{b}+\vec{c})
\end{aligned}
$$

(c) $\vec{a}+\overrightarrow{0}=\overrightarrow{0}+\vec{a}=\vec{a}$

Consider left hand side

$$
\begin{aligned}
\vec{a}+\overrightarrow{0} & =\left\langle x_{1}, y_{1}\right\rangle+\langle 0,0\rangle \\
& =\left\langle x_{1}+0, y_{1}+0\right\rangle
\end{aligned}
$$

Since 0 is identity with respect to addition in $\mathbb{R}$, so we can write

$$
\begin{aligned}
& =\left\langle x_{1}, y_{1}\right\rangle \\
& =\vec{a}
\end{aligned}
$$

Similarly

$$
\overrightarrow{0}+\vec{a}=\vec{a}
$$

(d) $\vec{a}+(-\vec{a})=\overrightarrow{0}$

The vector $-\vec{a}=\left\langle-x_{1},-y_{1}\right\rangle$. Then

$$
\begin{aligned}
\vec{a}+(-\vec{a}) & =\left\langle x_{1}, y_{1}\right\rangle+\left\langle-x_{1},-y_{1}\right\rangle \\
& =\left\langle x_{1}-x_{1}, y_{1}-y_{1}\right\rangle
\end{aligned}
$$

Since $-x_{1}$ is additive inverse of $x_{1}$ in $\mathbb{R}$, so we can write

$$
\left\langle x_{1}-x_{1}, y_{1}-y_{1}\right\rangle=\langle 0,0\rangle=\overrightarrow{0}
$$

Hence $\vec{a}+(-\vec{a})=\overrightarrow{0}$
(e) $k(l \vec{a})=(k l) \vec{a}$

Multiplication of a scalar $l$ with a vector $\vec{a}$ is

$$
\begin{aligned}
l \vec{a} & =l\left\langle x_{1}, y_{1}\right\rangle \\
& =\left\langle l x_{1}, l y_{1}\right\rangle
\end{aligned}
$$

Again multiplication of a scalar $k$ with a vector $l \vec{a}$ will give

$$
\begin{aligned}
k(l \vec{a}) & =k\left\langle l x_{1}, l y_{1}\right\rangle \\
& =\left\langle k l x_{1}, k l y_{1}\right\rangle \\
& =(k l)\left\langle x_{1}, y_{1}\right\rangle \\
& =(k l) \vec{a}
\end{aligned}
$$

(f) $k(\vec{a}+\vec{b})=k \vec{a}+k \vec{b}$

Consider left hand side

$$
\begin{aligned}
k(\vec{a}+\vec{b}) & =k\left(\left\langle x_{1}, y_{1}\right\rangle+\left\langle x_{2}, y_{2}\right\rangle\right) \\
& =k\left(\left\langle x_{1}+x_{2}, y_{1}+y_{2}\right\rangle\right) \\
& =\left\langle k\left(x_{1}+x_{2}\right), k\left(y_{1}+y_{2}\right)\right\rangle \\
& =\left\langle k x_{1}+k x_{2}, k y_{1}+k y_{2}\right\rangle \\
& =\left\langle k x_{1}, k y_{1}\right\rangle+\left\langle k x_{2}, k y_{2}\right\rangle \\
& =\left(\left\langle k x_{1}, k y_{1}\right\rangle\right)+\left(\left\langle k x_{2}, k y_{2}\right\rangle\right) \\
& =k \vec{a}+k \vec{b}
\end{aligned}
$$

(g) $(k+l) \vec{a}=k \vec{a}+l \vec{a}$

Multiplication of a scalar $(k+l)$ with a vector $\vec{a}$ is

$$
\begin{aligned}
(k+l) \vec{a} & =(k+l)\left\langle x_{1}, y_{1}\right\rangle \\
& =\left\langle(k+l) x_{1},(k+l) y_{1}\right\rangle
\end{aligned}
$$

Since distributive law holds in $\mathbb{R}$, so we can write

$$
\begin{aligned}
& =\left\langle k x_{1}+l x_{1}, k y_{1}+l y_{1}\right\rangle \\
& =\left\langle k x_{1}, k y_{1}\right\rangle+\left\langle l x_{1}, l y_{1}\right\rangle \\
& =k\left\langle x_{1}, y_{1}\right\rangle+l\left\langle x_{1}, y_{1}\right\rangle \\
& =k \vec{a}+l \vec{a}
\end{aligned}
$$

(h) $1 \vec{a}=\vec{a}$

Multiplication of a scalar 1 with a vector $\vec{a}$ is

$$
\begin{aligned}
1 \vec{a} & =1\left\langle x_{1}, y_{1}\right\rangle \\
& =\left\langle 1 x_{1}, 1 y_{1}\right\rangle
\end{aligned}
$$

Since 1 is identity with respect to multiplication in $\mathbb{R}$, so we can write

$$
\left\langle 1 x_{1}, 1 y_{1}\right\rangle=\left\langle x_{1}, y_{1}\right\rangle=\vec{a}
$$

### 2.11 Vector Field

A vector field in a plane is a function that associates with each point $P$ in the plane a unique vector $\vec{F}(P)$ parallel to the plane.
If $\vec{F}(P)$ is a vector field in an $x y$-coordinate system, and $P(x, y)$ is a point in $x y$ plane, then the associated vector with $P$ will have components that are functions of $x$ and $y$. Thus, the vector field $\vec{F}(P)$ can be expressed as

$$
\begin{equation*}
\vec{F}(x, y)=f(x, y) \hat{i}+g(x, y) \hat{j} \tag{2.11.1}
\end{equation*}
$$

Similarly, a vector field in 3-space is a function that associates with each point $P$ in 3-space a unique vector $\vec{F}(P)$ in 3-space.
If $\vec{F}(P)$ is a vector field in an $x y z$-coordinate system, and $P(x, y, z)$ then the vector field $\vec{F}(P)$ can be expressed as

$$
\begin{equation*}
\vec{F}(x, y, z)=f(x, y, z) \hat{i}+g(x, y, z) \hat{j}+h(x, y, z) \hat{k} \tag{2.11.2}
\end{equation*}
$$

If $\vec{r}$ is the position vector of $P$, the vector field of $P$ can also be represented as $\vec{F}(P)=\vec{F}(r)$. For example the gravitational field can be written as

$$
\vec{F}(\vec{r})=-\frac{G m M}{r^{3}} \vec{r}
$$

### 2.11.1 Gradient of a Function

The gradient of a function (at a point) is a vector that points in the direction in which the function increases most rapidly. In 2 -space the gradient of a function $f(x, y)$ is denoted by $\nabla f$ and is defined as

$$
\begin{equation*}
\nabla f(x, y)=f_{x}(x, y) \hat{i}+f_{y}(x, y) \hat{j} \tag{2.11.3}
\end{equation*}
$$

The gradient of a 3 -space function $f(x, y, z)$ is

$$
\begin{equation*}
\nabla f(x, y, z)=f_{x}(x, y, z) \hat{i}+f_{y}(x, y, z) \hat{j}+f_{z}(x, y, z) \hat{k} \tag{2.11.4}
\end{equation*}
$$

Note

- At $(x, y)$ the surface $z=f(x, y)$ has its maximum slope in the direction of the gradient, and the maximum slope is $\|f(x, y)\|$.
- At $(x, y)$ the surface $z=f(x, y)$ has its minimum slope in the direction that is opposite to the gradient, and the minimum slope is $-\|f(x, y)\|$.


## Flux

The flux of a vector field is the volume of fluid flowing through an element of surface area per unit time.
Conservative Fields and Potential functions A vector field $\vec{F}(r)$ in $2-$ space or 3 -space is said to be conservative in a region if it is the gradient field for some function $U$ in that region, that is, if

$$
\begin{equation*}
\vec{F}=-\nabla U \tag{2.11.5}
\end{equation*}
$$

The function $U$ is called a potential function for $\vec{F}$ in the region. This concept will be discussed in detail in chapter ??.

### 2.11.2 Divergence and Curl

Divergence and curl are two important operations on vector fields in 3-space. These names originate in the study of fluid flow, in which case the divergence relates to the way in which fluid flows toward or away from a point and the curl relates to the rotational properties of the fluid at a point.
The divergence of a vector field is defined as the flux divergence per unit volume. More clearly the divergence of a vector field is a number that can be thought of as a measure of the rate of change of the density of the fluid at a point. Consider the vector field

$$
\begin{equation*}
\vec{F}(x, y, z)=f(x, y, z) \hat{i}+g(x, y, z) \hat{j}+h(x, y, z) \hat{k} \tag{2.11.6}
\end{equation*}
$$

the divergence of $\vec{F}$, written $\operatorname{div} \vec{F}$, to be the function given by

$$
\begin{equation*}
\operatorname{div} \vec{F}=\frac{\partial f}{\partial x}+\frac{\partial g}{\partial y}+\frac{\partial h}{\partial z} \tag{2.11.7}
\end{equation*}
$$

The curl of a vector field measures the tendency of the vector field to rotate about a point. The curl of a vector field at a point is a vector that points in the direction of the axis of rotation and has magnitude represents the speed of the rotation. Mathematically the curl of $\vec{F}$, written $\operatorname{curl} \vec{F}$, to be the vector field given by

$$
\begin{align*}
\operatorname{curl} \vec{F} & =\left|\begin{array}{ccc}
\hat{i} & \hat{j} & \hat{k} \\
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
f & g & h
\end{array}\right|  \tag{2.11.8}\\
& =\left(\frac{\partial h}{\partial y}-\frac{\partial g}{\partial z}\right) \hat{i}-\left(\frac{\partial f}{\partial z}-\frac{\partial h}{\partial x}\right) \hat{j}+\left(\frac{\partial g}{\partial x}-\frac{\partial f}{\partial y}\right) \hat{k}
\end{align*}
$$

## The $\nabla$ Operator

The symbol $\nabla$ appearing in the gradient expression $\nabla U$ can be viewed as an operator known as del operator

$$
\begin{equation*}
\nabla=\frac{\partial}{\partial x} \hat{i}+\frac{\partial}{\partial y} \hat{j}+\frac{\partial}{\partial z} \hat{k} \tag{2.11.9}
\end{equation*}
$$

which when applied to $U(x, y, z)$ produces the gradient

$$
\begin{equation*}
\nabla U=\frac{\partial f}{\partial x} \hat{i}+\frac{\partial g}{\partial y} \hat{j}+\frac{\partial h}{\partial z} \hat{k} \tag{2.11.10}
\end{equation*}
$$

The del operator allows us to express the divergence of a vector field

$$
\begin{equation*}
\vec{F}(x, y, z)=f(x, y, z) \hat{i}+g(x, y, z) \hat{j}+h(x, y, z) \hat{k} \tag{2.11.11}
\end{equation*}
$$

in dot product notation as

$$
\begin{equation*}
\operatorname{div} \vec{F}=\nabla \cdot \vec{F}=\frac{\partial f}{\partial x}+\frac{\partial g}{\partial y}+\frac{\partial h}{\partial z} \tag{2.11.12}
\end{equation*}
$$

and the curl of this field in cross-product notation as

$$
\operatorname{curl} \vec{F}=\nabla \times \vec{F}=\left|\begin{array}{ccc}
\hat{i} & \hat{j} & \hat{k}  \tag{2.11.13}\\
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
f & g & h
\end{array}\right|
$$

Example 2.11.1. Find divergence and curl for a vector field

$$
\vec{F}=x^{2} e^{-z} \hat{i}+2 y z^{2} \hat{j}+3 y e^{z} \hat{k}
$$

## Solution

$$
\begin{aligned}
\operatorname{div} \vec{F} & =\nabla \cdot \vec{F} \\
& =\left\langle\frac{\partial}{\partial x}, \frac{\partial}{\partial y}, \frac{\partial}{\partial z}\right\rangle \cdot\left\langle x^{2} e^{-z}, 2 y z^{2}, 3 y e^{z}\right\rangle \\
& =\frac{\partial x^{2} e^{-z}}{\partial x}+\frac{\partial 2 y z^{2}}{\partial y}+\frac{\partial 3 y e^{z}}{\partial z} \\
& =2 x e^{-z}+2 z^{2}+3 y e^{z}
\end{aligned}
$$

and the curl of this field is

$$
\begin{aligned}
\operatorname{curl} \vec{F} & =\nabla \times \vec{F}=\left|\begin{array}{ccc}
\hat{i} & \hat{j} & \hat{k} \\
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
x^{2} e^{-z} & 2 y z^{2} & 3 y e^{z}
\end{array}\right| \\
& =\left(3 e^{z}-4 y z\right) \hat{i}-x^{2} e^{-z} \hat{j}
\end{aligned}
$$

## Exercises

1. Find the vector $\overrightarrow{A B}$ and its unit vector from the following pair of points. Also find a vector with magnitude 4 having same direction of $\overrightarrow{A B}$ vector.
a) $A(1,5), B(2,5)$
b) $A(5,2), B(0,0)$
c) $A(4,2), B(4,4)$
d) $A(4,2,0), B(2,2,2)$
e) $A(0,0,0), B(1,4,1)$
f) $A(3,1,3), B(9,4,3)$
2. Find the terminal point of $\vec{a}=3 \hat{i}+2 \hat{j}$ if the initial point is $(2,2)$.
3. Find the initial point of $\vec{a}=\langle 3,1,-2\rangle$ if the terminal point is $(3,0,3)$.
4. Consider the vectors $\vec{a}=\langle 2,-1,3\rangle$ and $\vec{b}=\langle-7,2,-1\rangle$. Find
a) $\vec{a} \cdot \vec{a}$
b) $\vec{a} \cdot \vec{b}$
c) $\hat{a}$ and $\hat{b}$
d) the angle between $\vec{a}$ and $\vec{b}$.
e) $\vec{a} \times \vec{a}$
f) $\vec{a} \times \vec{b}$ and check that it is orthogonal to both $\vec{a}$ and $\vec{b}$.
g) $\vec{b} \times \vec{a}$
h) the orthogonal components of $\vec{a}, \vec{b}$ and $\vec{a} \times \vec{b}$
i) the direction cosines of $\vec{a}, \vec{b}$ and $\vec{a} \times \vec{b}$ and approximate the direction angles to the nearest degree.
j) the area of the parallelogram whose adjacent sides are $\vec{a}$ and $\vec{b}$
5. Whether the points $A(2,2,0), B(1,0,2)$, and $C(0,4,3)$ are collinear or non-collinear. If non-collinear find the area of the triangle determined by these points.
6. Find $\vec{a} \cdot(\vec{b} \times \vec{c})$. Also find the volume $V$ of the parallelepiped whose adjacent edges are $\vec{a}, \vec{b}$ and $\vec{c}$ given as follow:
a) $\vec{a}=\langle 2,-3,1\rangle, \vec{b}=\langle 4,1,-3\rangle$ and $\vec{c}=\langle 0,1,5\rangle$
b) $\vec{a}=\langle 1,-2,2\rangle, \vec{b}=\langle 0,3,2\rangle$ and $\vec{c}=\langle-4,1,-3\rangle$
c) $\vec{a}=\hat{i}, \vec{b}=\hat{i}+\hat{j}$ and $\vec{c}=\hat{i}+\hat{j}+\hat{k}$
d) $\vec{a}=2 \hat{i}+\hat{j}, \vec{b}=\hat{i}-3 \hat{j}+\hat{k}$ and $\vec{c}=4 \hat{i}+\hat{k}$
7. Check whether the vectors $\vec{a}=\langle 3,-2,5\rangle, \vec{b}=\langle 0,3,2\rangle$ and $\vec{c}=\langle 1,4,-4\rangle$ are co-planer, if not find the volume $V$ of the parallelepiped that has $\vec{a}, \vec{b}$ and $\vec{c}$ as adjacent edges.
8. Find the resultant of two vectors with magnitudes $2 N$ and $4 N$ if the angle between them is (a) $0^{\circ}$, (b) $30^{\circ}$ (c) $45^{\circ}$ (d) $60^{\circ}$ (e) $90^{\circ}$, (f) $120^{\circ}$ and (g) $180^{\circ}$.
9. A block of weight 400 N rests on a smooth ramp that is inclined at an angle of $30^{\circ}$ with the ground (Figure 8.12). Let there are no frictional forces, then how much force does the block exert against the ramp, and how much force must be applied to the rope in a direction parallel to the ramp to prevent the block from sliding down the ramp?


Figure 2.44: Block on inclined plane
10. A wagon is pulled horizontally by exerting a constant force of 50 N on the handle at an angle of $60^{\circ}$ with the horizontal. How much work is done in moving the wagon 10 m ?
11. A force of $\vec{F}=\langle 3,-1,2\rangle N$ is applied to a point that moves on a line from $A(0,1,-1)$ to $B(4,1,2)$. If distance is measured in feet, how much work is done?
12. If $\overrightarrow{O A}=\vec{a}$ and $\overrightarrow{O B}=\vec{b}$ be two vectors and $\overrightarrow{O C}=\vec{c}$ be their resultant as shown in Fig. 2.45. If any transversal cuts their lines of actions in the points $D, E$ and $F$ as shown in Fig. 2.45, prove that

$$
\frac{a}{O D}+\frac{b}{O E}=\frac{c}{O F}
$$

13. Find divergence and curl for the following vector fields
(a) $\vec{F}=x^{2} y z^{3} \hat{i}+2 x y^{2} \sin z \hat{j}+3 z e^{y} \hat{k}$
(b) $\vec{F}=x^{2} e^{y} \hat{i}+2 x e^{y} \hat{j}+3 \cos y e^{x} \hat{k}$
(c) $\vec{F}=x^{2} y \hat{i}+2 x y^{2} z^{3} \hat{j}+3 z e^{x} \hat{k}$


Figure 2.45: triangle of vectors

## Chapter 3

## Composition and Resolution of

## Forces

In mechanics, the term force is very common as it is an important factor of this subject. We define it as: an agent which produces or tends to produce motion, equivalently destroys or tends to destroy motion.
For example, a street hawker push the cart to set it in motion and pull it to make it at rest. Hence force is applied to move or to stop the cart.

### 3.1 Force

Newton's fundamental laws and gravitational law are about force. Newton defined force as: Force is the external agency applied on a body to change its state of rest and motion.
It means a force can cause the acceleration of the body. It is a vector quantity and is usually denoted by $\vec{F}$. Newton's second law of motion provides mathematical concept of force. If a force $F$ acts on a body of mass $m$ and produces an acceleration $a$, then the magnitude of the force $F$ is

$$
F=m a
$$

In $S I$, its unit of measure is $N$ (Newton). A force in action may be constant force of variable force.
Since force is a vector quantity, so it is completely specified by the following four characteristics:

- Magnitude
- Point of application
- Line of action and
- Direction


### 3.1.1 Effect of Force

When a force acts on a body, it may have the following effects:
(a) It may bring a moving body at rest.
(b) It may bring a body at rest in motion.
(c) It may change the size or shape of the body.

### 3.1.2 Fundamental Natural Forces

The following four forces exist naturally may be regarded as fundamental forces.

1. Gravitational force
2. Electromagnetic force
3. Strong nuclear force and
4. Weak nuclear force

The above forces are defined as:

## 1. Gravitational Force

A force with which the earth attracts every body towards its center is called gravitational force. It is an external force and always acts downward. Remember that gravity is a non-contact force. For a body of mass $m$, the magnitude of this force is

$$
W=m g
$$

Gravitational force is the weakest force among the fundamental forces of nature but has the greatest largescale impact on the universe. Unlike the other forces, gravity works universally on all matter and energy, and is universally attractive.

## 2. Electromagnetic Force

This force exist between charged particles such as the force between two electrons, or the force between two current carrying wires. It is attractive for unlike charges and repulsive for like charges. The electromagnetic force obeys inverse square law. It is very strong compared to the gravitational force. It is the combination of electrostatic and magnetic forces.

## 3. Strong Nuclear Force

It is the strongest of all the basic forces of nature. It, however, has the shortest range, of the order of $10^{-15} \mathrm{~m}$. This force holds the protons and neutrons together in the nucleus of an atom.

## 4. Weak Nuclear Force

Weak nuclear force is important in certain types of nuclear process such as -decay. This force is not as weak as the gravitational force.

### 3.1.3 System of Forces

Like vectors, when several forces act simultaneously on a body, they constitute a system of forces. These system are named, depending on the position of line of action of the forces as following:

- Concurrent forces If the lines of action of all the forces acting on a body pass through a single point, the forces are termed as concurrent forces.
- Collinear forces If the line of action of all the forces acting on a body lie along a single line, the forces are called collinear forces. Example is, forces on a rope in a tug of war.
- Coplanar forces If all the forces acting on a body lie in a single plane, they are called coplanar forces. They may be:
(a) coplanar and concurrent forces.
(b) coplanar and non-concurrent forces.
- Non-Coplanar forces If all the forces acting on a body do not lie in a single plane they are called non-coplanar forces or forces in space. They may be:
(a) non-coplanar and concurrent forces.
(b) non-coplanar and non-concurrent forces.


### 3.1.4 Classification of Forces

Forces acting on a rigid body can be classified as:
(a) External forces
(b) Internal forces

## External force

A force acting on a body from some external agency is called external force. External Forces are further classified into two types

## 1. Applied or Active Force

Applied forces, or contact forces, are also external forces.
We apply external forces when we push a swing, pull an elastic, or throw a ball.
2. Reactive Force or Force of Constraint When a particle or body is made to move along or rest on a curve or surface, the force exerted by such curve or surface is called a force of constraint or reactive force.

If a particle rests on or moves along an inclined plane, the reaction of the plane is a reactive force but the weight of the particle is an active force.

## Internal force

Internal forces are those forces which the different parts of a system exert on each other and such forces obey Newtons Third Law of Motion.
If we regard the earth and the moon as a system, then mutual attraction will be internal force but the attraction of the sun exerted on each of them will be am external force. Examples of Internal Forces There are four types of internal forces:

1. Tension
2. Compression
3. Torsion
4. Shear

## 1. Tension

Tension is an internal force that pulls the particles of a stretched object apart. The example is an elastic band. When it is stretched by fingers (the external force), the internal force of tension causes all of the particles of the band to pull apart. Tension acts on many objects, such as a trampoline or guitar strings.
If an elastic band is stretched too far, it breaks. The particles in an elastic material can stretch only to a certain point. This point is called the breaking point.

## 2. Compression

An object that is pressed or squeezed experiences compression.
Compression is an internal force that presses the particles of an object together. Compression happens when you kick a soccer ball or lay your head on a pillow. The springs inside a mattress compress when you lie on a bed.
Compressed objects usually return to their original shape when the external force is removed.

## 3. Torsion

Torsion acts in an object when the object is twisted. It can be created by twisting one or both ends of the object.
Torsion happens when we turn a doorknob or when a skater twists in a jump

## 4. Shear

Shear forces happen when two forces in an object push or pull in opposite directions. Shear forces can bend, tear, and cut objects.
A strong wind can cause shear forces within a tree. The forces can bend or break the tree.

### 3.1.5 Some other Well known Forces

## - Action and Reaction

When two bodies are in contact, each exerts a force on the other, known as action and reaction. They are equal in magnitude and opposite in direction.

- Friction

When a body moves or tends to move upon another body, an opposing force (opposite to the direction of motion) appears between their surfaces, known as the force of friction. It will be discussed in detail in chapter 5 .

### 3.2 Composition and Resolution of Forces

As force is a vector quantity, so its composition and resolution will be dealt by vector laws, hence all properties of vectors should be in your mind.
Resultant Force If a number of forces act simultaneously on a particle, then it is possible to find out a single force which can replace them. This single force has the same effect as produced by all the given forces. This single force is called resultant force. It is generally denoted by $\vec{R}$.
Composition Of Forces The process by which the resultant force of a number of given forces is obtained, is known as composition of forces.
Component of a Force A force can be resolved into two or more parts, without changing its effect on the body. These parts are called components of a force. Each component has shared effect on the body in some direction.
Resolution Of Forces The process of dividing a given force into a number of components, is called resolution of a force. It is opposite process of composition of forces.
In this chapter, first we will discuss resultant force, for this recall addition of vectors.
Two or more forces can be added geometrically (graphically) and analytically to obtain their resultant. A number of methods are available to add forces. A few of them are listed below.

### 3.3 Resultant of Coplanar and non-Concurrent Forces

The resultant of two or more coplanar and non-concurrent forces can be calculated by head to tail method.

### 3.3.1 Head to Tail Method

Head to tail method or graphical method is one of the easiest method used to find the resultant force of two or more than two forces. Given two forces $\vec{P}$ and $\vec{Q}$. Their resultant $\vec{P}+\vec{Q}$ is obtained by joining the tail of $\vec{Q}$ with the head of $\vec{P}$ without making any alteration in the direction of vectors. Draw a vector from the tail of $\vec{P}$ to the head of $\vec{Q}$. This vector is $\vec{P}+\vec{Q}$. Also we can obtain $\vec{Q}+\vec{P}$, the same vector, let it be $\vec{R}$. Hence we can say

$$
\vec{R}=\vec{P}+\vec{Q}=\vec{Q}+\vec{P}
$$

This means vector addition is commutative. Geometrically this sum is illustrated in Fig.


Figure 3.1: Resultant force by head to tail method
3.1, on left side two forces are acting in same directions and on right side two vectors are not acting in same directions. The length of $\vec{P}+\vec{Q}$ is the magnitude and its inclination with $\vec{P}$ is its direction relative to $P$.
Any number of forces can be added by this method.

Example 3.3.1. Consider two forces with magnitudes $3 N$ and $4 N$ are acting on a body.
Find their resultant vector using head to tail rule.
Solution: We label the forces as

$$
\begin{aligned}
& P=3 N \\
& Q=4 N
\end{aligned}
$$

Extending the forces in backward direction, we find the angle between them is $60^{\circ}$. Consider 2-dimensional rectangular coordinate system. Select a suitable scale to represent the forces.


Figure 3.2: Two force acting on body

Let $1 N=1 \mathrm{~cm}$. Draw a line of length of 3 cm in the direction of $P$. Draw a line of length of 4 cm starting from the tip of $P$ in the direction of $Q$. Draw a line starting from the tail of $P$ and ends at the tip of $Q$. This is the resultant of the given forces. By measuring, we find its length is 5.1 cm , hence the magnitude of the resultant is 5.1 N . By using protector


Figure 3.3: Resultant by head to tail rule.
we find the resultant makes an angle $\theta=35^{\circ}$ with force $P$.
When the two forces are not acting in same direction, the Head to tail method is known as triangle method and is defined as following.

## Triangle Method

If two forces are represented in magnitude and direction by two sides of a triangle taken in order, then their resultant is the closing side of the triangle taken in the opposite order.
Proof Two forces $\vec{P}$ and $\vec{Q}$ are represented completely by two sides $O A$ and $A B$ of a triangle $O A B$. Then by vector addition (head to tail rule) the resultant vector $\vec{R}$ of two


Figure 3.4: triangular Method
vectors $\vec{P}$ and $\vec{Q}$ is

$$
\vec{R}=\vec{P}+\vec{Q}
$$

Geometrically this sum is illustrated in Fig. 3.4. The length of $\vec{R}$ is the magnitude and its inclination with $\vec{P}$ is its direction.

Example 3.3.2. Consider two concurrent and coplanar forces $\vec{P}=\langle 2,3\rangle$ and $\vec{Q}=\langle 2,-3\rangle$ are acting on a body. Find their resultant force.

Solution:The system is shown in Fig. 3.5. Here

$$
\begin{aligned}
\vec{P} & =\langle 2,3\rangle \\
\vec{Q} & =\langle 2,-3\rangle
\end{aligned}
$$

Their resultant is

$$
\begin{aligned}
\vec{R} & =\vec{P}+\vec{Q} \\
& =\langle 2,3\rangle+\langle 2,-3\rangle \\
& =\langle 4,0\rangle
\end{aligned}
$$

Geometrically the resultant is shown in Fig. 3.6.

## Polygon Method

The triangle rule can be made more general to apply to any geometrical shape or polygon. This then becomes the polygon law. It can be stated as:
If a number of forces are represented both in magnitude and direction by the sides of a polygon taken in the same order, then their resultant is represented both in magnitude and direction by the closing side of the polygon taken in the opposite order.


Figure 3.5: Forces $\vec{P}$ and $\vec{Q}$.

Proof We consider four forces $\vec{F}_{1}, \vec{F}_{2}, \vec{F}_{3}$ and $\vec{F}_{4}$, that are represented by four sides $O A . A B, B C$ and $C D$ of a polygon $O A B C D$. Then by vector addition (head to tail rule) the resultant force $\vec{R}$ of four forces is

$$
\vec{R}=\vec{F}_{1}+\vec{F}_{2}+\vec{F}_{3}+\vec{F}_{4}
$$

Geometrically this sum is illustrated in Fig. 3.7. The length of $\vec{R}$ is the magnitude and its inclination with $\vec{F}_{1}$ is its direction relative to $\vec{F}_{1}$.
Since vector addition is associative, the resultant force obtained by the polygon rule is independent of the order of composition of forces.

### 3.3.2 Subtraction of forces

The subtraction of a force from another is a force obtained by adding one force to the negative of the other. It is also called difference of forces.
Given two forces $\vec{P}$ and $\vec{Q}$. Their difference $\vec{P}-\vec{Q}$ is obtained by joining the tail of $-\vec{Q}$ with the head of $\vec{P}$ without making any alteration in the direction of forces. Draw a vector from the tail of $\vec{P}$ to the head of $-\vec{Q}$. This vector is $\vec{R}=\vec{P}-\vec{Q}$.

$$
\vec{R}=\vec{P}-\vec{Q}=\vec{P}+(-\vec{Q})
$$

Geometrically this difference force is illustrated in Fig. 3.8, on left side the two forces are parallel and on right side the two forces are not parallel. The length of $\vec{R}$ is the magnitude


Figure 3.6: Resultant of $\vec{P}$ and $\vec{Q}$


Figure 3.7: Polygon method
and its inclination with $\vec{P}$ is its direction relative to $\vec{P}$.

Example 3.3.3. Consider two concurrent and coplanar forces $\vec{P}=\langle 2,3\rangle$ and $\vec{Q}=\langle 2,-3\rangle$ are acting on a body. Find their difference force $P-Q$.

Solution:The system is shown in Fig. 3.9. Here

$$
\begin{aligned}
\vec{P} & =\langle 2,3\rangle \\
\vec{Q} & =\langle 2,-3\rangle
\end{aligned}
$$

and

$$
-\vec{Q}=\langle-2,3\rangle
$$



Figure 3.8: Subtraction of two forces.

Their difference $P-Q$ is

$$
\begin{aligned}
\vec{R} & =\vec{P}-\vec{Q} \\
& =\langle 2,3\rangle+\langle-2,3\rangle \\
& =\langle 0,6\rangle
\end{aligned}
$$

Geometrically the difference force is shown in Fig. 3.10.

### 3.4 Resultant of Concurrent and Coplanar Forces

Here the forces acting on a particle are concurrent and coplanar. We will find the resultant of two concurrent and coplanar forces acting on the body, first by parallelogram law and next by ratio theorem.

### 3.4.1 Parallelogram Law

If two forces acting simultaneously on a particle, are represented in magnitude and direction by two adjacent sides of a parallelogram, then their resultant is represented in magnitude and direction by the diagonal of the parallelogram, passing through the point of intersection of the forces as shown in Fig. 3.11. and is given by (3.4.1)

$$
\begin{equation*}
\vec{R}=\vec{P}+\vec{Q} \tag{3.4.1}
\end{equation*}
$$

If $\alpha$ is the angle between these two forces then the magnitude of the resultant is

$$
\begin{equation*}
R=\sqrt{P^{2}+Q^{2}+2 P Q \cos \alpha} \tag{3.4.2}
\end{equation*}
$$

and if the resultant makes an angle $\theta$ with the force $\vec{P}$, then

$$
\tan \theta=\frac{Q \sin \alpha}{P+Q \cos \alpha}
$$



Figure 3.9: Forces $\vec{P}$ and $\vec{Q}$.
or

$$
\begin{equation*}
\theta=\arctan \left(\frac{Q \sin \alpha}{P+Q \cos \alpha}\right) \tag{3.4.3}
\end{equation*}
$$

Note: We usually refer (3.4.2) for magnitude and (3.4.3) for direction of the resultant.
Proof The two forces $\vec{P}$ and $\vec{Q}$ are represented completely by two adjacent sides $O A$ and $O C$ of a parallelogram $O A B C$. The vector $\vec{Q}$ can be represented by $A B$ side, then by vector addition (head to tail rule) the resultant vector $\vec{R}$ of two vectors $\vec{P}$ and $\vec{Q}$ is

$$
\vec{R}=\vec{P}+\vec{Q}
$$

In Fig. 3.12, a triangle $O A B$ is formed by three vectors $\vec{P}, \vec{Q}, \vec{R}$. In this triangle, $\angle A=\pi-\alpha, \angle O=\theta$, and let $\angle B=\phi$, then by law of sines we can write

$$
\frac{R}{\sin (\pi-\alpha)}=\frac{P}{\sin \phi}=\frac{Q}{\sin \theta}
$$



Figure 3.10: Difference $\vec{P}-\vec{Q}$ force.

Again consider triangle $O A B$, by law of cosines we can write

$$
\begin{aligned}
\cos (\angle O A B) & =\frac{|\overline{O A}|^{2}+|\overline{A B}|^{2}-|\overline{O B}|^{2}}{2|\overline{O A}||\overline{A B}|} \\
\cos (\pi-\alpha) & =\frac{P^{2}+Q^{2}-R^{2}}{2 P Q} \\
-\cos \alpha & =\frac{P^{2}+Q^{2}-R^{2}}{2 P Q} \\
-2 P Q \cos \alpha & =P^{2}+Q^{2}-R^{2}
\end{aligned}
$$

Then $R$ can be written as

$$
R=\sqrt{P^{2}+Q^{2}+2 P Q \cos \alpha}
$$

Draw a perpendicular $B D$ from $B$ on $O A$, which meets $O A$ at $D$ produced as shown in Fig. 3.13. In right angle triangle $A D B$

$$
\cos \alpha=\frac{|\overline{A D}|}{|\overline{A B}|}
$$

then

$$
\begin{align*}
|\overline{A D}| & =|\overline{A B}| \cos \alpha \\
& =Q \cos \alpha \tag{3.4.4}
\end{align*}
$$



Figure 3.11: Parallelogram of vectors


Figure 3.12: Resultant by head to tail rule.

Similarly

$$
\begin{equation*}
|\overline{B D}|=Q \sin \alpha \tag{3.4.5}
\end{equation*}
$$

Let the resultant $\vec{R}$ makes an angle $\theta$ with the vector $\vec{P}$ as shown in Fig. 3.13. In right angle triangle $O D B, \angle B O D=\theta$, then

$$
\begin{equation*}
\tan \theta=\frac{|\overline{B D}|}{|\overline{O B}|} \tag{3.4.6}
\end{equation*}
$$

Since

$$
|\overline{O D}|=|\overline{O A}|+|\overline{A D}|
$$

then (3.4.6) becomes

$$
\begin{equation*}
\tan \theta=\frac{|\overline{B D}|}{|\overline{O A}|+|\overline{A D}|} \tag{3.4.7}
\end{equation*}
$$



Figure 3.13: Parallelogram law

Using (3.4.4) and (3.4.5), (3.4.7) becomes

$$
\tan \theta=\frac{Q \sin \alpha}{P+Q \cos \alpha}
$$

or

$$
\begin{equation*}
\theta=\arctan \left(\frac{Q \sin \alpha}{P+Q \cos \alpha}\right) \tag{3.4.8}
\end{equation*}
$$

If the resultant $\vec{R}$ makes an angle $\theta$ with the force $\vec{Q}$, the resultant will remain the same, but in (3.4.8), $P$ and $Q$ will interchange.
Particular Cases Here some particular cases can be discussed for different values of the angle between the forces.

Case 1: If the two forces are acting in the same direction, then the angle between them is $\alpha=0 \mathrm{rad}$, as shown in Fig. 3.14 and by (3.4.2), their resultant is


Figure 3.14: Vectors acting in the same direction

$$
\begin{align*}
R & =\sqrt{P^{2}+Q^{2}+2 P Q \cos (0)} \\
& =\sqrt{P^{2}+Q^{2}+2 P Q} \\
& =\sqrt{(P+Q)^{2}} \\
& =P+Q \tag{3.4.9}
\end{align*}
$$

(3.4.9) gives the magnitude of the resultant. For direction, consider (3.4.3) with $\alpha=0$

$$
\begin{align*}
\tan \theta & =\frac{Q \sin (0)}{P+Q \cos (0)} \\
& =0 \tag{3.4.10}
\end{align*}
$$

(3.4.10) gives the direction of the resultant. In this case the magnitude of the resultant of the forces is the sum of the individual magnitudes of the forces and it acts in the direction of the forces. Such resultant is known as resultant of greatest magnitude.

Case 2: If the two forces are perpendicular, then the angle between them is $\alpha=\frac{\pi}{2} \mathrm{rad}$, as shown in Fig. 3.15 and by (3.4.2), their resultant is


Figure 3.15: Vectors are orthogonal

$$
\begin{align*}
R & =\sqrt{P^{2}+Q^{2}+2 P Q \cos \left(\frac{\pi}{2}\right)} \\
& =\sqrt{P^{2}+Q^{2}} \tag{3.4.11}
\end{align*}
$$

(3.4.11) gives the magnitude of the resultant. For direction, consider (3.4.3) with $\alpha=\frac{\pi}{2}$

$$
\begin{aligned}
\tan \theta & =\frac{Q \sin \left(\frac{\pi}{2}\right)}{P+Q \cos \left(\frac{\pi}{2}\right)} \\
& =\frac{Q}{P}
\end{aligned}
$$

or

$$
\begin{equation*}
\theta=\arctan \left(\frac{Q}{P}\right) \tag{3.4.12}
\end{equation*}
$$

(3.4.12) gives the direction of the resultant.

Case 3: If the two vectors are acting in the opposite direction, then the angle between them is $\alpha=\pi \mathrm{rad}$, and by (3.4.2), their resultant is

$$
\begin{align*}
R & =\sqrt{P^{2}+Q^{2}+2 P Q \cos (\pi)} \\
& =\sqrt{P^{2}+Q^{2}-2 P Q} \\
& =\sqrt{(P-Q)^{2}} \\
& =|P-Q| \tag{3.4.13}
\end{align*}
$$

(3.4.13) gives the magnitude of the resultant, when the vectors are acting in opposite direction, as shown in Fig. 3.16. For direction, consider (3.4.3) with $\alpha=\pi$


Figure 3.16: Vectors acting in opposite direction

$$
\begin{aligned}
\tan \theta & =\frac{Q \sin (\pi)}{P+Q \cos (\pi)} \\
& =0
\end{aligned}
$$

and

$$
\begin{equation*}
\theta=0 \text { or } \pi \tag{3.4.14}
\end{equation*}
$$

(3.4.14) gives the direction of the resultant. In this case the magnitude of the resultant of the vectors is the difference of the individual magnitudes of the vectors and it acts in the direction of a forces with greater magnitude. This resultant is known as resultant of least magnitude.

Example 3.4.1. Consider two concurrent and coplanar forces with magnitudes 3 N and $4 N$ are acting on a body. The angle between them is 60 degrees. Find their resultant vector using parallelogram law of vectors.

Solution: We can label the forces as

$$
\begin{aligned}
P & =3 N \\
Q & =4 N
\end{aligned}
$$



Figure 3.17: Two concurrent forces acting on a body.


Figure 3.18: Resultant by parallelogram method.
and the angle between them is

$$
\alpha=60^{\circ}
$$

Using (3.4.2), the resultant is

$$
\begin{aligned}
R & =\sqrt{3^{2}+4^{2}+2(3)(4) \cos 60} \\
& =\sqrt{9+16+12} \\
& =\sqrt{37}=6.0828 \approx 6 \mathrm{~N}
\end{aligned}
$$

Let $P$ is the initial vector and $Q$ is the terminal vector, then using (3.4.3), the angle of resultant with $P$ is

$$
\begin{aligned}
\theta & =\arctan \left(\frac{4 \sin (60)}{3+4 \cos (60)}\right) \\
& =\arctan \left(\frac{3.4641}{5}\right) \\
& =\arctan (0.6928)=34.72^{\circ} \approx 35^{\circ}
\end{aligned}
$$

The resultant makes an angle $\theta=35^{\circ}$ with force $P$.

Corollary 3.4.1. If two concurrent and coplanar forces $P$ and $Q$ act at such an angle that their resultant $R=P$, show that if $P$ is doubled and $Q$ remained same then the new resultant is at right angle to $Q$.

Proof Let two concurrent and coplanar forces $P$ and $Q$ act at $O$ and $\alpha$ is the angle between them as shown in Fig. 3.19. Following the law of parallelogram of vector addition,


Figure 3.19: $R=P$ is resultant of $P$ and $Q$
their resultant is given by

$$
\begin{equation*}
R=\sqrt{P^{2}+Q^{2}+2 P Q \cos \alpha} \tag{3.4.15}
\end{equation*}
$$

But from given condition $R=P$, (3.4.15) becomes

$$
\begin{equation*}
P=\sqrt{P^{2}+Q^{2}+2 P Q \cos \alpha} \tag{3.4.16}
\end{equation*}
$$

Squaring both sides, we get

$$
P^{2}=P^{2}+Q^{2}+2 P Q \cos \alpha
$$

or

$$
Q(Q+2 P \cos \alpha)=0
$$

Since $Q \neq 0$, so we have

$$
\begin{equation*}
Q+2 P \cos \alpha=0 \tag{3.4.17}
\end{equation*}
$$

Next the other given condition implies that we have to find the sum of $2 P$ and $Q$. Let it be $R_{1}$ which makes an angle $\theta$ with $Q$ that can be calculated by using (3.4.8).

$$
\begin{equation*}
\theta=\arctan \left(\frac{2 P \sin \alpha}{Q+2 P \cos \alpha}\right) \tag{3.4.18}
\end{equation*}
$$

Using (3.4.17) in (3.4.18), the angle is

$$
\begin{equation*}
\theta=\arctan (\infty)=\frac{\pi}{2} \tag{3.4.19}
\end{equation*}
$$

(3.4.19) shows that new resultant is at right angle to $Q$ as shown in Fig. 3.20.


Figure 3.20: Resultant of $2 P$ and $Q$ is orthogonal with $Q$

Example 3.4.2. Consider two concurrent and coplanar forces with magnitude $5 N$ each are acting on a body. The angle between them is 120 degrees. The magnitude of their resultant is also $5 N$. The system is shown in Fig. 3.21. Its angle with one of the force is 60 degrees. Next the magnitude of this force is doubled then show that the new resultant is at right angle to the force whose magnitude is fixed.

Solution: After doubling the magnitude of a force, we can label them as

$$
\begin{aligned}
P & =10 \mathrm{~N} \\
Q & =5 \mathrm{~N}
\end{aligned}
$$

and the angle between them is

$$
\alpha=120^{\circ}
$$

Then we have to show that the new resultant is at right angle to force $Q$. Its angle with force $Q$ can be calculated by using (3.4.3)

$$
\begin{aligned}
\theta & =\arctan \left(\frac{10 \sin (120)}{5+10 \cos (120)}\right) \\
& =\arctan \left(\frac{5 \sqrt{3}}{5-5}\right) \\
& =\arctan (\infty)=90^{\circ}
\end{aligned}
$$



Figure 3.21: Forces and their resultant.

The resultant is at right angle to force $Q$ and is shown in Fig. 3.22.

### 3.4.2 Ratio Theorem

As the ratio is chosen as $\lambda, \mu$, so this theorem is also known as $\lambda, \mu$ theorem. In this theorem, the two forces are concurrent and coplanar. Their resultant force also acts at the point of action of these forces. A line lies on the lines of action of these forces that helps to determine the resultant.

Theorem 3.4.2. If $A$ and $B$ are two terminal points of forces $\vec{a}$ and $\vec{b}$ in a system with $O$ as point of application. Next $C$ is a point which divides $A B$ in ratio $\lambda: \mu$, then their resultant $\vec{c}$ with terminal point $C$ relative to $O$ is

$$
\begin{equation*}
\vec{c}=\frac{\mu \vec{a}+\lambda \vec{b}}{\lambda+\mu} \tag{3.4.20}
\end{equation*}
$$

equivalently

$$
\begin{equation*}
(\lambda+\mu) \overrightarrow{O C}=\mu \overrightarrow{O A}+\lambda \overrightarrow{O B} \tag{3.4.21}
\end{equation*}
$$

Proof Two points $A$ and $B$ having position vectors $\vec{a}$ and $\vec{b}$ relative to $O$ are shown in Fig. 3.27. If $C$ divides $A B$ in ratio $\lambda: \mu$, then from Fig. 3.27, we can write

$$
A C=\frac{\lambda}{\lambda+\mu} A B
$$



Figure 3.22: Resultant of $2 P$ and $Q$ is orthogonal with $Q$

Hence

$$
\begin{equation*}
\overrightarrow{A C}=\frac{\lambda}{\lambda+\mu} \overrightarrow{A B} \tag{3.4.22}
\end{equation*}
$$

Following head to tail rule of vector addition, $\overrightarrow{O B}$ can be written as a sum of $\overrightarrow{O A}$ and $\overrightarrow{A B}$ (see Fig. 3.27). Then

$$
\begin{equation*}
\overrightarrow{A B}=\overrightarrow{O B}-\overrightarrow{O A} \tag{3.4.23}
\end{equation*}
$$

Using (3.4.23), (3.4.22) can be written as

$$
\begin{equation*}
\overrightarrow{A C}=\frac{\lambda}{\lambda+\mu}(\overrightarrow{O B}-\overrightarrow{O A}) \tag{3.4.24}
\end{equation*}
$$

Again following head to tail rule of vector addition, $\overrightarrow{O C}$ can be written as (see Fig. 3.27)

$$
\begin{equation*}
\overrightarrow{O C}=\overrightarrow{O A}+\overrightarrow{A C} \tag{3.4.25}
\end{equation*}
$$

Since $\overrightarrow{O A}=\vec{a}, \overrightarrow{O B}=\vec{b}$ and $\overrightarrow{O C}=\vec{c}$ is given by (3.4.24). Then (3.4.25) becomes

$$
\begin{aligned}
\vec{c} & =\vec{a}+\frac{\lambda}{\lambda+\mu}(\vec{b}-\vec{a}) \\
& =\frac{(\lambda+\mu-\lambda) \vec{a}+\lambda \vec{b}}{\lambda+\mu} \\
& =\frac{\mu \vec{a}+\lambda \vec{b}}{\lambda+\mu}
\end{aligned}
$$



Figure 3.23: $\lambda \mu$ Theorem.


Figure 3.24: Vector addition by head to tail rule.

Hence the result.
Special case: When $\lambda=\mu$, then $C$ is the mid point of $A B$ and $\vec{c}$ is

$$
\vec{c}=\frac{\vec{a}+\vec{b}}{2}
$$

Example 3.4.3. Let the force along $O A$ is $\vec{a}=-\hat{i}+3 \hat{j}+\hat{k}$ and along $O B$ is $\vec{b}=2 \hat{i}-2 \hat{k}$.
If $C$ divides the line $A B$ in ratio 2:1 find their resultant $\vec{c}$.

Solution Here $\lambda=2$ and $\mu=1$ and $\lambda+\mu=3$, the vectors $\mu \vec{a}=-\hat{i}+3 \hat{j}+\hat{k}$ and $\lambda \vec{b}=2 \vec{b}=4 \hat{i}-4 \hat{k}$
then the resultant is

$$
\begin{aligned}
\vec{c} & =\frac{(-\hat{i}+3 \hat{j}+\hat{k})+(4 \hat{i}-4 \hat{k})}{3} \\
& =\frac{3 \hat{i}+3 \hat{j}-3 \hat{k}}{3} \\
& =\hat{i}+\hat{j}-\hat{k}
\end{aligned}
$$

Example 3.4.4. In triangle $O A B, \overrightarrow{O A}=\vec{a}$ and $\overrightarrow{O B}=\vec{b}$ as shown in Fig. 3.25. If $C$


Figure 3.25: triangle of vectors
divides the line $A B$ in ratio 1:2 and $D$ divides the line $O B$ in ratio 1:2. Find $\overrightarrow{D C}$ and hence show that $\overrightarrow{D C}$ is parallel to $\overrightarrow{O A}$.

Solution Following $\lambda, \mu$ theorem, the sum of $\overrightarrow{O A}$ and $\overrightarrow{O B}$ is $\overrightarrow{O C}$ as shown in Fig. 3.26 (a) with $\lambda=1, \mu=2$. Hence $\overrightarrow{O C}$ is

$$
\overrightarrow{O C}=\frac{2 \vec{a}+\vec{b}}{3}
$$

In Fig. 3.26 (b) $\overrightarrow{D O}$ is

$$
\overrightarrow{D O}=-\frac{1}{3} \vec{b}
$$

following head to tail rule of vector addition, in Fig. 3.26 (b) $\overrightarrow{D C}$ can be written as

$$
\begin{aligned}
\overrightarrow{D C} & =\overrightarrow{D O}+\overrightarrow{O C} \\
& =-\frac{1}{3} \vec{b}+\frac{2}{3} \vec{a}+\frac{1}{3} \vec{b} \\
& =\frac{2}{3} \vec{a}
\end{aligned}
$$

Since $\overrightarrow{D C}$ is a scalar multiple of $\vec{a}$ and is acting in the direction of $\vec{a}$; that is $\overrightarrow{D C}$ is parallel to $\overrightarrow{O A}$.


Figure 3.26: Vector addition by head to tail rule.

Corollary 3.4.3. Two concurrent and coplanar forces $\vec{P}$ and $\vec{Q}$ act at point $O$ and their resultant is $\vec{R}$. If any transversal cuts the lines of action of the forces in points $A, B, C$ respectively, prove that

$$
\begin{equation*}
\frac{R}{O C}=\frac{P}{O A}+\frac{Q}{O B} \tag{3.4.26}
\end{equation*}
$$



Figure 3.27: A line cuts lines of action of forces.
Proof First we will calculate directions of these forces, that will be the unit vectors. As $\vec{P}$ acts along $\overrightarrow{O A}$, unit vector in this direction is

$$
e_{1}=\frac{\overrightarrow{O A}}{\overrightarrow{O A}}
$$

Then $\vec{P}$ is

$$
\begin{align*}
\vec{P} & =P e_{1}=P \overrightarrow{O A} \\
& =\frac{P}{O A} \overrightarrow{O A} \tag{3.4.27}
\end{align*}
$$

Similarly $\vec{Q}$ is

$$
\begin{align*}
\vec{Q} & =Q e_{2}=Q \frac{\overrightarrow{O B}}{\overrightarrow{O B}} \\
& =\frac{Q}{O B} \overrightarrow{O B} \tag{3.4.28}
\end{align*}
$$

and $\vec{R}$ is

$$
\begin{align*}
\vec{R} & =R e_{3}=R \overrightarrow{O C} \\
& =\frac{R}{O C} \overrightarrow{O C} \tag{3.4.29}
\end{align*}
$$

Using (3.4.21) from ratio theorem, we can write

$$
\frac{P}{O A} \overrightarrow{O A}+\frac{Q}{O B} \overrightarrow{O B}=\left(\frac{P}{O A}+\frac{Q}{O B}\right) \overrightarrow{O C}
$$

Using (3.4.27) and (3.4.28), we can write

$$
\begin{equation*}
\vec{P}+\vec{Q}=\left(\frac{P}{O A}+\frac{Q}{O B}\right) \overrightarrow{O C} \tag{3.4.30}
\end{equation*}
$$

As $\vec{R}$ is resultant of $\vec{P}$ and $\vec{Q}$, so

$$
\vec{P}+\vec{Q}=\vec{R}
$$

Using (3.4.29), we can write

$$
\begin{equation*}
\vec{P}+\vec{Q}=\frac{R}{O C} \overrightarrow{O C} \tag{3.4.31}
\end{equation*}
$$

From (3.4.32) and (3.4.31), we can write

$$
\frac{R}{O C} \overrightarrow{O C}=\left(\frac{P}{O A}+\frac{Q}{O B}\right) \overrightarrow{O C}
$$

As both vectors are equal, it means

$$
\frac{R}{O C}=\frac{P}{O A}+\frac{Q}{O B}
$$

Hence the result.

### 3.5 Resolution Of Forces

A force $\vec{F}$ can be resolved into an infinite number of pairs of possible components. For this, a parallelogram is constructed with $\vec{F}$ as diagonal and whose sides are along any two distinct lines which are coplanar with the force $\vec{F}$ and pass through its line of action. If the directions of the components are specified, the resolution of force into components is unique. The two directions in which we resolve a given force may or may not be mutually perpendicular. First we consider arbitrary directions.

### 3.5.1 Resolved Components of a Force in Two given Directions

Let $\vec{R}$ be a given force and $\vec{P}$ and $\vec{Q}$ be its resolved parts making angles $\theta$ and $\phi$ with it. Completing parallelogram $O A C B$ as shown in Fig. 3.28. In this figure, consider the triangle $O A B$, in which the sides $O A, A B$ and $O B$ represents the forces $P, Q$ and $R$ in magnitude respectively. Then by law of sine's we have


Figure 3.28: Resolved components of a vector in two given directions

$$
\frac{R}{\sin (\pi-\alpha)}=\frac{P}{\sin \phi}=\frac{Q}{\sin \theta}
$$

and we can write

$$
\begin{equation*}
P=\frac{R \sin \phi}{\sin (\pi-\alpha)} \tag{3.5.1}
\end{equation*}
$$

and

$$
\begin{equation*}
Q=\frac{R \sin \theta}{\sin (\pi-\alpha)} \tag{3.5.2}
\end{equation*}
$$

Then $P$ and $Q$ given by (3.5.1) and (3.5.3) respectively gives the magnitudes of resolved parts of a force.

Example 3.5.1. Consider a force of magnitude 50 N acts on a body. Let this force has two components, one on its right making an angle $30^{\circ}$ with it and second on its left making an angle $45^{\circ}$ with it. The system is shown in Fig. 3.29. Find their magnitudes.

Solution: Let $R$ be the force acting on the body. Let $P$ be its component acting on its right making an angle $30^{\circ}$ with it and $Q$ be its component acting on its left making an angle $45^{\circ}$ with it. The system is shown in Fig. 3.30. We can say


Figure 3.29: Resolved components of a force


Figure 3.30: Resolved components of a force

$$
\begin{aligned}
\theta & =30^{\circ} \\
\phi & =45^{\circ} \\
\alpha & =75^{\circ}
\end{aligned}
$$

then

$$
\pi-\alpha=180-75=105
$$

Using (3.5.1), the magnitude of $P$ is

$$
\begin{aligned}
P & =\frac{50 \sin (45)}{\sin (105)} \\
& =\frac{50(0.707)}{0.966} \\
& =36.6 \mathrm{~N}
\end{aligned}
$$

and (3.5.3), the magnitude of $Q$ is

$$
\begin{aligned}
Q & =\frac{50 \sin (30)}{\sin (105)} \\
& =\frac{50(0.5)}{0.966} \\
& =25.9 \mathrm{~N}
\end{aligned}
$$

### 3.5.2 Rectangular Components of a Force

If the resolved parts of a force are at right angle with each other, then these are known as rectangular components of a force. In this case the angle between the forces $\alpha=\frac{\pi}{2}$, then $\phi=\frac{\pi}{2}-\theta$, then


Figure 3.31: Resolved components of a vector in orthogonal directions

$$
\sin (\pi-\alpha)=\sin \left(\frac{\pi}{2}\right)=1
$$

and

$$
\sin \phi=\sin \left(\frac{\pi}{2}-\theta\right)=\cos \theta
$$

Then the resolved components of a force are

$$
\begin{equation*}
P=R \cos \theta \tag{3.5.3}
\end{equation*}
$$

and

$$
\begin{equation*}
Q=R \sin \theta \tag{3.5.4}
\end{equation*}
$$

(3.5.3) and (3.5.4) are known as rectangular components of a force and are shown in Fig. 3.31.

Example 3.5.2. Consider a force of magnitude $4 N$ acts on a body. Let this force has two components, each making an angle $45^{\circ}$ with it. Find their magnitudes.

Solution: Let $R$ be the force acting on the body. Let its component $P$ acts on its right side and its component $Q$ acts on its left side. The system is shown in Fig. 3.33. We can say that the resultant makes an angle $\theta=45^{\circ}$ with its component $P$. Then the magnitude of $P$ is

$$
\begin{aligned}
P & =R \cos \theta \\
& =4 \cos \left(45^{\circ}\right) \\
& =2 \sqrt{2} \approx 2.828 N
\end{aligned}
$$



Figure 3.32: Resolved components of a force
and the magnitude of $Q$ is

$$
\begin{aligned}
Q & =R \sin \theta \\
& =4 \sin \left(45^{\circ}\right) \\
& =2 \sqrt{2} \approx 2.828 N
\end{aligned}
$$

Here the magnitude of each rectangular components is $2.828 N$

### 3.5.3 Resolved Components of a Force in Rectangular Coordinate System

A force is, generally, resolved along two mutually perpendicular directions. If we consider rectangular coordinate system, the component along $x$ axis is called horizontal component and the component along $y$ axis is called vertical component.
We can consider a force in rectangular coordinate system.

## Resolved Components of a Force in Two Dimensional Space

If we consider two dimensional rectangular coordinate system, the component along $x$ axis is called horizontal component and the component along $y$ axis is called vertical component. A force in $2-$ space is

$$
\begin{align*}
\vec{F} & =\left\langle F_{1}, F_{2}\right\rangle \\
& =F_{1} \hat{i}+F_{2} \hat{j} \tag{3.5.5}
\end{align*}
$$

If a force $\vec{F}$ is applied at origin making an angle $\theta$ with $x$-axis, then the force with the combination of its orthogonal components can be written as

$$
\begin{equation*}
\vec{F}=F \cos \theta \hat{i}+F \sin \theta \hat{j} \tag{3.5.6}
\end{equation*}
$$

Example 3.5.3. Consider a force of magnitude $4 N$ acts on a body along positive $x$-axis.
Let this force has two rectangular components, each making an angle $45^{\circ}$ with it. Find these components.

Solution: Let $R$ be the force acting on the body. Let its component $P$ lies in first quadrant and its component $Q$ in fourth quadrant. The system is shown in Fig. 3.33. We can say that the resultant makes an angle $\theta=45^{\circ}$ with its component $P$. Then the


Figure 3.33: Resolved components of a force
magnitude of $P$ is

$$
\begin{aligned}
P & =R \cos \theta \\
& =4 \cos \left(45^{\circ}\right) \\
& =2 \sqrt{2} \approx 2.828 N
\end{aligned}
$$

As $P$ lies in first quadrant and it makes an angle $\phi=45^{\circ}$ with $x$-axis. By using (3.5.6), its $x$-component $P_{x}$ is

$$
\begin{aligned}
P_{x} & =P \cos \phi \\
& =2 \sqrt{2} \cos \left(45^{\circ}\right) \\
& =2
\end{aligned}
$$

and its $y$-component $P_{y}$ is

$$
\begin{aligned}
P_{y} & =P \sin \phi \\
& =2 \sqrt{2} \sin \left(45^{\circ}\right) \\
& =2
\end{aligned}
$$

Hence the component of given force in first quadrant is

$$
\vec{P}=\langle 2,2\rangle
$$

Next the magnitude of $Q$ is

$$
\begin{aligned}
Q & =R \sin \theta \\
& =4 \sin \left(45^{\circ}\right) \\
& =2 \sqrt{2} \approx 2.828 N
\end{aligned}
$$

As $Q$ lies in fourth quadrant and it makes an angle $\psi=-45^{\circ}$ with $x$-axis. By using (3.5.6), its $x$ - component $Q_{x}$ is

$$
\begin{aligned}
Q_{x} & =Q \cos \psi \\
& =2 \sqrt{2} \cos \left(-45^{\circ}\right) \\
& =2
\end{aligned}
$$

and its $y$-component $Q_{y}$ is

$$
\begin{aligned}
Q_{y} & =Q \sin \psi \\
& =2 \sqrt{2} \sin \left(-45^{\circ}\right) \\
& =-2
\end{aligned}
$$

Hence the component of given force in fourth quadrant is

$$
\vec{Q}=\langle 2,-2\rangle
$$

## Resolved Components of a Force in Three Dimensional Space

A force in three dimensional rectangular coordinate system is

$$
\begin{align*}
\vec{F} & =\left\langle F_{1}, F_{2}, F_{3}\right\rangle \\
& =F_{1} \hat{i}+F_{2} \hat{j}+F_{3} \hat{k} \tag{3.5.7}
\end{align*}
$$

If force $\vec{F}$ makes angle $\alpha$ with $x$-axis, $\beta$ with $y$-axis and $\gamma$ with $z$-axis and taking dot product of (3.5.7) with $\hat{i}, \hat{j}$ and $\hat{k}$, we have

$$
\begin{aligned}
& F_{1}=F \cos \alpha \\
& F_{2}=F \cos \beta \\
& F_{3}=F \cos \gamma
\end{aligned}
$$

then (3.5.7) can be written as

$$
\begin{align*}
\vec{F} & =F \cos \alpha \hat{i}+F \cos \beta \hat{j}+F \cos \gamma \hat{k} \\
& =F(\cos \alpha \hat{i}+\cos \beta \hat{j}+\cos \gamma \hat{k})  \tag{3.5.8}\\
& =F \hat{F} \hat{F} \tag{3.5.9}
\end{align*}
$$

Here

$$
\begin{equation*}
\hat{F}=\cos \alpha \hat{i}+\cos \beta \hat{j}+\cos \gamma \hat{k} \tag{3.5.10}
\end{equation*}
$$

is unit vector which determines the direction of the force.

Example 3.5.4. Find the rectangular components of a force $\vec{F}=\langle 1,1,1\rangle$.
The magnitude of the given force is

$$
\begin{aligned}
F & =\sqrt{1^{2}+1^{2}+1^{2}} \\
& =\sqrt{3}
\end{aligned}
$$

and a unit vector in this direction is

$$
\hat{F}=\left\langle\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}\right\rangle
$$

Comparing it with (3.5.10), we find

$$
\cos \alpha=\frac{1}{\sqrt{3}}
$$

and

$$
\begin{aligned}
\alpha & =\arccos \left(\frac{1}{\sqrt{3}}\right)=\beta=\gamma \\
& =0.955 \text { radian }=54.7^{\circ}
\end{aligned}
$$

The force makes an angle of $54.7^{\circ}$ with all its components.

### 3.6 Resultant of Coplanar Forces Using Rectangular Components

The rectangular components of resultant force of two or more coplanar forces can be obtained by summing rectangular components of individual forces. For two dimensional system, the horizontal components of resultant vector of two or more vectors is the sum of horizontal components of individual vectors and the vertical components of resultant vector of two or more vectors is the sum of vertical components of individual vectors. First consider a system of two vectors in $2-$ space.

### 3.6.1 Resultant of Two Coplanar Vectors

Consider two coplanar vectors $\vec{P}$ and $\vec{Q}$ as shown in Fig. 3.34. Their representations in


Figure 3.34: Two coplanar vectors.
rectangular components are

$$
\vec{P}=P_{X} \hat{i}+P_{Y} \hat{j}
$$

and

$$
\vec{Q}=Q_{X} \hat{i}+Q_{Y} \hat{j}
$$

Then by vector addition (head to tail rule) the resultant vector $\vec{R}$ of two vectors $\vec{P}$ and $\vec{Q}$ is

$$
\begin{equation*}
\vec{R}=\vec{P}+\vec{Q} \tag{3.6.1}
\end{equation*}
$$

$\vec{R}$ in rectangular components is

$$
\vec{R}=R_{X} \hat{i}+R_{Y} \hat{j}
$$

In rectangular components, (3.6.1) can be written as

$$
\begin{aligned}
R_{X} \hat{i}+R_{Y} \hat{j} & =\left(P_{X} \hat{i}+P_{Y} \hat{j}\right)+\left(Q_{X} \hat{i}+Q_{Y} \hat{j}\right) \\
& =\left(P_{X}+Q_{X}\right) \hat{i}+\left(P_{Y}+Q_{Y}\right) \hat{j}
\end{aligned}
$$

Comparing components, we have

$$
R_{X}=P_{X}+Q_{X}
$$

The horizontal component of resultant is sum of horizontal components of individual vectors. And

$$
R_{Y}=P_{Y}+Q_{Y}
$$

the vertical component of resultant is sum of vertical components of individual vectors. The magnitude of resultant is

$$
\begin{equation*}
R=\sqrt{R_{X}^{2}+R_{Y}^{2}} \tag{3.6.2}
\end{equation*}
$$

And the direction is

$$
\begin{equation*}
\theta=\arctan \left(\frac{R_{Y}}{R_{X}}\right) \tag{3.6.3}
\end{equation*}
$$

Geometrically this sum is illustrated in Fig. 3.35. The length of $\vec{R}$ is the magnitude and



Figure 3.35: Addition of two coplanar vectors.
its inclination with horizontal is its direction.

### 3.6.2 Resultant of $n$ Coplanar Vectors

For $n$ coplanar vectors $\vec{F}_{1}, \vec{F}_{2}, \ldots \vec{F}_{n}$, the rectangular components of resultant vector are

$$
R_{X}=F_{1 X}+F_{2 X}+\ldots+F_{n X}=\sum_{i=1}^{n} F_{i X}
$$

And

$$
R_{Y}=F_{1 Y}+F_{2 Y}+\ldots+F_{n Y}=\sum_{i=1}^{n} F_{i Y}
$$

The magnitude and direction of resultant vector can be calculated by using (3.6.2) and (3.6.3) respectively.

### 3.6.3 Resultant of $n$ Non-coplanar Vectors

Next consider a system of $n$ vectors $\vec{F}_{1}, \vec{F}_{2}, \ldots \vec{F}_{n}$ in $3-$ space .
The rectangular components of resultant vector are

$$
\begin{aligned}
& R_{X}=F_{1 X}+F_{2 X}+\ldots+F_{n X}=\sum_{i=1}^{n} F_{i X} \\
& R_{Y}=F_{1 Y}+F_{2 Y}+\ldots+F_{n Y}=\sum_{i=1}^{n} F_{i Y}
\end{aligned}
$$

And

$$
R_{Z}=F_{1 Z}+F_{2 Z}+\ldots+F_{n Z}=\sum_{i=1}^{n} F_{i Z}
$$

The magnitude of resultant is

$$
\begin{equation*}
R=\sqrt{R_{X}^{2}+R_{Y}^{2}+R_{Z}^{2}} \tag{3.6.4}
\end{equation*}
$$

If the resultant $R$ makes angles $\alpha$ with $x$ axis, $\beta$ with $y$ axis and $\gamma$ with $z$ axis, then direction cosines are

$$
\begin{aligned}
\cos \alpha & =\frac{R_{X}}{R} \\
\cos \beta & =\frac{R_{Y}}{R}
\end{aligned}
$$

and

$$
\cos \gamma=\frac{R_{Z}}{R}
$$

which will help to determine the direction of the resultant.

### 3.7 Resultant of Concurrent and Coplanar Vectors

Following subsection 2.5.4, the rectangular components of a vector can be obtained. The rectangular components of resultant vector of two or more concurrent and coplanar vectors can be obtained by summing rectangular components of individual vectors. For two dimensional system, the horizontal components of resultant vector of two or more vectors is the sum of horizontal components of individual vectors and the vertical components of resultant vector of two or more vectors is the sum of vertical components of individual vectors. First consider a system of two vectors in 2 - space.

### 3.7.1 Resultant of Two Concurrent and Coplanar Vectors

Consider two concurrent and coplanar vectors $\vec{P}$ and $\vec{Q}$. Let their point of application is origin $O$ of cartesian coordinate system. Vector $\vec{P}$ makes an angle $\alpha_{1}$ and vector $\vec{Q}$ makes an angle $\alpha_{2}$ with $x$ axis as shown in Fig. 3.36. Their representations in rectangular


Figure 3.36: Resultant of two concurrent and coplanar vectors
components are

$$
\begin{aligned}
\vec{P} & =P_{X} \hat{i}+P_{Y} \hat{j} \\
& =P \cos \alpha_{1} \hat{i}+P \sin \alpha_{1} \hat{j}
\end{aligned}
$$

and

$$
\begin{aligned}
\vec{Q} & =Q_{X} \hat{i}+Q_{Y} \hat{j} \\
& =Q \cos \alpha_{2} \hat{i}+Q \sin \alpha_{2} \hat{j}
\end{aligned}
$$

If $\vec{R}$ is their resultant making an angle $\theta$ with $x$ axis as shown in Fig. 3.36 and is given by (3.6.1). Its representation in rectangular components is

$$
\begin{aligned}
\vec{R} & =R_{X} \hat{i}+R_{Y} \hat{j} \\
& =R \cos \theta \hat{i}+R \sin \theta \hat{j}
\end{aligned}
$$

In rectangular components, (3.6.1) can be written as

$$
\begin{aligned}
R_{X} \hat{i}+R_{Y} \hat{j} & =\left(P_{X} \hat{i}+P_{Y} \hat{j}\right)+\left(Q_{X} \hat{i}+Q_{Y} \hat{j}\right) \\
& =\left(P_{X}+Q_{X}\right) \hat{i}+\left(P_{Y}+Q_{Y}\right) \hat{j}
\end{aligned}
$$

Comparing components, we have

$$
\begin{aligned}
R_{X} & =P_{X}+Q_{X} \\
& =P \cos \alpha_{1}+Q \cos \alpha_{2}
\end{aligned}
$$

The horizontal component of resultant is sum of horizontal components of individual vectors. And

$$
\begin{aligned}
R_{Y} & =P_{Y}+Q_{Y} \\
& =P \sin \alpha_{1}+Q \sin \alpha_{2}
\end{aligned}
$$

the vertical component of resultant is sum of vertical components of individual vectors. The length of $\vec{R}$ is the magnitude and its inclination with $x$ axis is its direction can be calculated by using (3.6.2) and (3.6.3) respectively.

Example 3.7.1. Consider two forces magnitudes $5 N$ and $8 N$ are acting on a body. Let the first force makes an angle $15^{\circ}$ with horizontal and second force makes an angle $45^{\circ}$ with horizontal. Find their resultant force.

Solution: The given data is

$$
\begin{aligned}
F_{1} & =5 N \\
F_{2} & =8 N \\
\theta_{1} & =15^{\circ} \\
\theta_{2} & =45^{\circ}
\end{aligned}
$$

The resultant can be obtained by using addition of vectors by rectangular components. The $x$ components of first force is

$$
\begin{aligned}
F_{1 X} & =F_{1} \cos 15^{\circ} \\
& =5(0.9659)=4.8296 N
\end{aligned}
$$

The $x$ components of second force is

$$
\begin{aligned}
F_{2 X} & =F_{2} \cos 45^{\circ} \\
& =8(0.7071)=5.6568 N
\end{aligned}
$$

The $y$ components of first force is

$$
\begin{aligned}
F_{1 Y} & =F_{1} \sin 15^{\circ} \\
& =5(0.2588)=1.294 N
\end{aligned}
$$

The $y$ components of second force is

$$
\begin{aligned}
F_{2 Y} & =F_{2} \sin 45^{\circ} \\
& =8(0.7071)=5.6568 N
\end{aligned}
$$

Let $F$ be the resultant of two forces. Its $x$ components is

$$
\begin{aligned}
F_{X} & =F_{1 X}+F_{2 X} \\
& =4.8296+5.6568=10.4864 N
\end{aligned}
$$

and $y$ components is

$$
\begin{aligned}
F_{Y} & =F_{1 Y}+F_{2 Y} \\
& =1.294+5.6568=6.9508 \mathrm{~N}
\end{aligned}
$$

Using (3.6.2) magnitude of resultant force is

$$
\begin{aligned}
F & =\sqrt{\left(F_{X}\right)^{2}+\left(F_{Y}\right)^{2}} \\
& =\sqrt{(10.4864)^{2}+(6.9508)^{2}} \\
& =\sqrt{158.2781}=12.5808 \\
& \simeq 12.6 \mathrm{~N}
\end{aligned}
$$

Let the resultant force makes an angle $\theta$ with $x$ axis. Using (3.6.3) direction of resultant force is

$$
\begin{aligned}
\theta & =\arctan \left(\frac{F_{Y}}{F_{X}}\right) \\
& =\arctan \left(\frac{6.9508}{10.4864}\right)=\arctan (0.6628) \\
& =33.5379 \simeq 36^{\circ}
\end{aligned}
$$

### 3.7.2 Resultant of $n$ Concurrent and Coplanar Vectors

For $n$ vectors $\vec{F}_{1}, \vec{F}_{2}, \ldots \vec{F}_{n}$ making angles $\alpha_{1}, \alpha_{2}, \ldots \alpha_{n}$ with $x$ axis as shown in Fig. 3.37. If $\vec{R}$ is their resultant making an angle $\theta$ with $x$ axis as shown in Fig. 3.37. Rectangular


Figure 3.37: Resultant of $n$ concurrent and coplanar vectors
components of resultant vector are

$$
\begin{aligned}
R_{X} & =F_{1 X}+F_{2 X}+\ldots+F_{n X}=\sum_{i=1}^{n} F_{i X} \\
R \cos \theta & =F_{1} \cos \alpha_{1}+F_{2} \cos \alpha_{2}+\ldots+F_{n X} \cos \alpha_{n}=\sum_{i=1}^{n} F_{i} \cos \alpha_{i}
\end{aligned}
$$

And

$$
\begin{aligned}
R_{Y} & =F_{1 Y}+F_{2 Y}+\ldots+F_{n Y}=\sum_{i=1}^{n} F_{i Y} \\
R \sin \theta & =F_{1} \sin \alpha_{1}+F_{2} \sin \alpha_{2}+\ldots+F_{n X} \sin \alpha_{n}=\sum_{i=1}^{n} F_{i} \sin \alpha_{i}
\end{aligned}
$$

The magnitude and direction of resultant vector can be calculated by using (3.6.2) and (3.6.3) respectively.

Corollary 3.7.1. Three forces $\vec{F}_{1}, \vec{F}_{2}$ and $\vec{F}_{3}$ act at a point parallel to the sides of a triangle $A B C$ taken in the same order. Show that the magnitude of the resultant is

$$
\begin{equation*}
\sqrt{F_{1}^{2}+F_{2}^{2}+F_{3}^{2}-2 F_{2} F_{3} \cos A-2 F_{1} F_{3} \cos B-2 F_{1} F_{2} \cos C} \tag{3.7.1}
\end{equation*}
$$

where $A$ is angle between forces $F_{1}$ and $F_{3}, B$ is angle between forces $F_{1}$ and $F_{2}$ and $C$ is angle between forces $F_{2}$ and $F_{3}$. The system is shown in the Fig. 3.38.


Figure 3.38: Forces acting at a point along sides of a triangle


Figure 3.39: Forces acting at a point along sides of a triangle

Proof: Take 2-dimensional rectangular coordinate system with $O$ (origin) as the point of application of the forces. For simplicity consider side $A B$ parallel to $x$ axis as shown in the Fig. 3.39. The resultant can be calculated by finding its rectangular components. First we find rectangular components of these forces. The force $F_{1}$ makes 0 degree with $x$ axis, then its rectangular components are

$$
\begin{aligned}
& F_{1 x}=F_{1} \\
& F_{1 y}=0
\end{aligned}
$$

The force $F_{2}$ makes $180-B$ degree with $x$ axis hence lying in $I I$ quadrant, then its rectangular components are

$$
\begin{aligned}
& F_{2 x}=F_{2} \cos (180-B)=-F_{2} \cos B \\
& F_{2 y}=F_{2} \sin (180-B)=F_{2} \sin B
\end{aligned}
$$

The force $F_{3}$ makes $\pi+A$ radian with $x$ axis hence lying in $I I I$ quadrant, then its rectangular components are

$$
\begin{aligned}
& F_{3 x}=F_{3} \cos (\pi+A)=-F_{3} \cos A \\
& F_{3 y}=F_{3} \sin (\pi+A)=-F_{3} \sin A
\end{aligned}
$$

The xcomponent of resultant is

$$
\begin{aligned}
R_{x} & =F_{1 x}+F_{2 x}+F_{3 x} \\
& =F_{1}-F_{2} \cos B-F_{3} \cos A
\end{aligned}
$$

The ycomponent of resultant is

$$
\begin{aligned}
R_{y} & =F_{1 y}+F_{2 y}+F_{3 y} \\
& =F_{2} \sin B-F_{3} \sin A
\end{aligned}
$$

Using (3.6.2) magnitude of resultant force is

$$
\begin{equation*}
R=\sqrt{\left(R_{X}\right)^{2}+\left(R_{Y}\right)^{2}} \tag{3.7.2}
\end{equation*}
$$

The square of $x$ component is

$$
\begin{aligned}
\left(R_{X}\right)^{2} & =\left(F_{1}-F_{2} \cos B-F_{3} \cos A\right)^{2} \\
& =F_{1}^{2}+F_{2}^{2} \cos ^{2} B+F_{3}^{2} \cos ^{2} A-2 F_{1} F_{2} \cos B-2 F_{1} F_{3} \cos A+2 F_{2} F_{3} \cos B \cos A
\end{aligned}
$$

and the square of $y$ component is

$$
\begin{aligned}
\left(R_{Y}\right)^{2} & =\left(F_{2} \sin B-F_{3} \sin A\right)^{2} \\
& =F_{2}^{2} \sin ^{2} B+F_{3}^{2} \sin ^{2} A-2 F_{2} F_{3} \sin B \sin A
\end{aligned}
$$

The sum of these squared component is

$$
\begin{aligned}
\left(R_{X}\right)^{2}+\left(R_{Y}\right)^{2} & =F_{1}^{2}+F_{2}^{2} \cos ^{2} B+F_{3}^{2} \cos ^{2} A-2 F_{1} F_{2} \cos B \\
& -2 F_{1} F_{3} \cos A+2 F_{2} F_{3} \cos B \cos A \\
& +F_{2}^{2} \sin ^{2} B+F_{3}^{2} \sin ^{2} A-2 F_{2} F_{3} \sin B \sin A \\
& =F_{1}^{2}+F_{2}^{2}\left(\cos ^{2} B+\sin ^{2} B\right)+F_{3}^{2}\left(\cos ^{2} A+\sin ^{2} A\right) \\
& -2 F_{1} F_{2} \cos B-2 F_{1} F_{3} \cos A+2 F_{2} F_{3}(\cos A \cos B-\sin A \sin B)
\end{aligned}
$$

Using trigonometric identities, we can write

$$
\begin{align*}
\left(R_{X}\right)^{2}+\left(R_{Y}\right)^{2} & =F_{1}^{2}+F_{2}^{2}+F_{3}^{2}-2 F_{1} F_{2} \cos B-2 F_{1} F_{3} \cos A \\
& +2 F_{2} F_{3} \cos (A+B) \tag{3.7.3}
\end{align*}
$$

In triangle $A B C$, angle $A+B=(180-C)$, and $\cos (180-C)=-\cos C$, then (3.7.3) becomes

$$
\begin{align*}
\left(R_{X}\right)^{2}+\left(R_{Y}\right)^{2} & =F_{1}^{2}+F_{2}^{2}+F_{3}^{2}-2 F_{1} F_{2} \cos B-2 F_{1} F_{3} \cos A \\
& -2 F_{2} F_{3} \cos C \tag{3.7.4}
\end{align*}
$$

Using (3.7.4), the magnitude of the resultant is

$$
R=\sqrt{F_{1}^{2}+F_{2}^{2}+F_{3}^{2}-2 F_{2} F_{3} \cos A-2 F_{1} F_{3} \cos B-2 F_{1} F_{2} \cos C}
$$



Figure 3.40: Three concurrent and non-coplanar vectors


Figure 3.41: Three concurrent and non-coplanar vectors

### 3.8 Resultant of Three Concurrent and Non-coplanar Forces

Consider three concurrent and non-coplanar forces $\vec{F}_{1}, \vec{F}_{2}$ and $\vec{F}_{3}$ are acting at point $O$, are represented by the vectors $\overrightarrow{O A}=\vec{a}, \overrightarrow{O B}=\vec{b}$ and $\overrightarrow{O C}=\vec{c}$ respectively as shown in Fig 3.40. Complete the parallelepiped $O A B C D E F G$ whose edges $O A, O B$ and $O C$ represents the vectors $\vec{F}_{1}, \vec{F}_{2}$ and $\vec{F}_{3}$ respectively as shown in Fig. 3.41. Consider parallelogram $O A F B$, whose two adjacent sides $O A$ and $O B$ represents the vectors $\vec{F}_{1}$ and $\vec{F}_{2}$. Then by law of parallelogram of vector addition, $O F$ represents the sum of $\vec{F}_{1}$ and $\overrightarrow{F_{2}}$. Let it be $\vec{u}$.

$$
\overrightarrow{O A}+\overrightarrow{O B}=\overrightarrow{O F}
$$

or

$$
\vec{F}_{1}+\vec{F}_{2}=\vec{u}
$$



Figure 3.42: Addition of three concurrent and non-coplanar vectors

Next consider parallelogram $O F G C$, whose two adjacent sides $O F$ and $O C$ represents the vectors $\vec{u}$ and $\vec{F}_{3}$. Then by law of parallelogram of vector addition, $O G$ represents the sum of $\vec{u}$ and $\vec{c}$. Let it be $\vec{R}$.

$$
\overrightarrow{O F}+\overrightarrow{O C}=\overrightarrow{O G}
$$

or

$$
\vec{u}+\overrightarrow{F_{3}}=\vec{R}
$$

so that

$$
\overrightarrow{O A}+\overrightarrow{O B}+\overrightarrow{O C}=\overrightarrow{O G}
$$

or

$$
\vec{F}_{1}+\vec{F}_{2}+\vec{F}_{3}=\vec{R}
$$

Hence the resultant of three concurrent and non-coplanar forces, acting at $O$, is represented by the diagonal, drawn through $O$, of a parallelepiped with the given forces for its edges.

### 3.9 Moment of a Force or Torque

The tendency of a force to produce rotation of a body about some reference axis or point is called the moment of a force. It is also known as torque or turning effect of a force. For example turning pencil in a sharpener, turning stopcock of a water tap, turning doorknob and so on. The moment of a force is positive if the rotation is in anti clock wise sense and is negative if the rotation is in clock wise sense. In $S I$ system its unit of measure is Newton-meter $(N-m)$.

### 3.9.1 Moment of a Force About a Point

Consider a rigid body. Let a force $\vec{F}$ is acting on it which tends to rotate it about a fixed point $O$ as shown in Fig. 3.45. The line along which the force acts is called the line of action of the force and the line $O C$ is known as the axis of rotation. Take a point $A$ on


Figure 3.43: Moment of a force
the line of action of the force having position vector $\vec{r}$ with respect to $O$. Moment of a force $\vec{F}$ about $O$ is a vector quantity and is defined as

$$
\begin{equation*}
\vec{\tau}=\vec{r} \times \vec{F} \tag{3.9.1}
\end{equation*}
$$

Hence $\vec{\tau}$ is a vector perpendicular to the plane containing $\vec{r}$ and $\vec{F}$. If $\theta$ is the angle between $\vec{r}$ and $\vec{F}$, then

$$
\begin{equation*}
\vec{r} \times \vec{F}=r F \sin \theta \hat{n} \tag{3.9.2}
\end{equation*}
$$

Where $\hat{n}$ is a unit vector perpendicular to the plane containing $\vec{r}$ and $\vec{F}$. The magnitude of the moment of force $\vec{F}$ about $O$ is

$$
\begin{align*}
\tau & =|\vec{r} \times \vec{F}| \\
& =r F \sin \theta \tag{3.9.3}
\end{align*}
$$

The perpendicular distance from $O$ to the line of action of the force is called the moment arm of the force. To calculate it, consider the right angle triangle $A B O$

$$
\begin{align*}
d & =r \sin (\pi-\theta) \\
& =r \sin \theta \tag{3.9.4}
\end{align*}
$$

Using (4.1.13) in (4.1.12), we have

$$
\tau=F d
$$

(4.1.14) gives the magnitude of the moment of a force $\vec{F}$ about $O$. From (4.1.14), it is clear greater the force, greater is the moment of the force and longer the moment arm, greater is the moment of the force. It is more understandable by the following examples.
Examples To open or close a door, it is more easy to apply a force at the outer edge of a door rather than near the hinge.
It is more easy to open or tighten a nut or a bolt with a spanner having long arm rather than a spanner having short arm with same applied force.

### 3.9.2 Moment of a Force About a Point Lying on the Line of Action of the Force

If the fixed point $O$ lies on the line of action of the force, see Fig. 3.45. Take an other point


Figure 3.44: Moment of a force
$A$ on the line of action of the force having position vector $\vec{r}$ with respect to $O$. In this case
$\vec{r}$ and $\vec{F}$ have the same direction (or have opposite direction), so $\theta=0$ or $(\theta=\pi)$, then moment of a force $\vec{F}$ about $O$ is

$$
\begin{align*}
\vec{\tau} & =\vec{r} \times \vec{F} \\
& =r F \sin \theta \hat{n} \\
& =0 \hat{n} \tag{3.9.5}
\end{align*}
$$

And the magnitude of the moment of force $\vec{F}$ about $O$ is also zero.

Corollary 3.9.1. The moment of a force is independent of the choice of the point of application of the force.

Proof Consider a rigid body. Let a force $\vec{F}$ is acting it on at point $A$ whose position vector is $\vec{r}$ with respect to $O$.. Due to this force the body tends to rotate about a fixed point $O$, then moment of a force $\vec{F}$ about $O$ is

$$
\vec{\tau}=\vec{r} \times \vec{F}
$$

If $B$ is another point on the line of action of the force having position vector $\overrightarrow{r_{1}}$ with respect


Figure 3.45: Moment of a force
to $O$. By head to tail rule $\overrightarrow{r_{1}}$ can be written as

$$
\overrightarrow{r_{1}}=\vec{r}+\overrightarrow{A B}
$$

then moment of a force $\vec{F}$ about $O$ is

$$
\begin{aligned}
\vec{\tau} & =\overrightarrow{r_{1}} \times \vec{F} \\
& =(\vec{r}+\overrightarrow{A B}) \times \vec{F} \\
& =\vec{r} \times \vec{F}+\overrightarrow{A B} \times \vec{F}
\end{aligned}
$$

As $A$ lies on the line of action of the force hence the moment $\overrightarrow{A B} \times \vec{F}$ is zero and we are left with

$$
\vec{\tau}=\vec{r} \times \vec{F}
$$

Hence the moment of a force is independent of the choice of the point of application of the force.

Theorem 3.9.2. The moment about a point of the resultant of a system of concurrent forces is equal to the sum moments of all forces of the system about the same point. This theorem is known as Varignon's theorem, due to the French mathematician P. Varignon (1654-1722)

Proof Let $\vec{F}_{1}, \vec{F}_{2}, \vec{F}_{3}, \ldots \vec{F}_{n}$ be forces acting at $A$. Let $\vec{r}$ be the position vector of $A$ relative to origin $O$ of a reference system. Let $\vec{R}$ be the resultant of these forces as shown in Fig. 3.46, then $\vec{R}$ is

$$
\vec{R}=\vec{F}_{1}+\vec{F}_{2}+\vec{F}_{3}+\ldots+\vec{F}_{n}
$$

Next moment of $\vec{R}$ about $A$ is


Figure 3.46: Sum of moments of $n$ forces

$$
\begin{aligned}
\vec{\tau}=\vec{r} \times \vec{R} & =\vec{r} \times\left(\vec{F}_{1}+\vec{F}_{2}+\vec{F}_{3}+\ldots+\vec{F}_{n}\right) \\
& =\vec{r} \times \vec{F}_{1}+\vec{r} \times \vec{F}_{2}+\vec{r} \times \vec{F}_{3}+\ldots+\vec{r} \times \vec{F}_{n}
\end{aligned}
$$

Note: If these forces have distinct position vector, then the sum of moments of all the forces is

$$
\begin{aligned}
\vec{\tau} & =\overrightarrow{\tau_{1}}+\overrightarrow{\tau_{2}}+\overrightarrow{\tau_{3}}+\ldots+\vec{\tau}_{n} \\
& =\overrightarrow{r_{1}} \times \vec{F}_{1}+\overrightarrow{r_{2}} \times \vec{F}_{2}+\overrightarrow{r_{3}} \times \vec{F}_{3}+\ldots+\overrightarrow{r_{n}} \times \vec{F}_{n}
\end{aligned}
$$

These concepts are illustrated in the following examples.

Example 3.9.1. The forces $\vec{F}_{1}=-\hat{i}+\hat{j}, \vec{F}_{2}=\hat{j}, \vec{F}_{3}=-2 \hat{i}-4 \hat{j}$ and $\vec{F}_{4}=2 \hat{i}$ are acting at $O(0,0), A(2,0), B(0,-2)$ and $C(3,2)$ respectively as shown in the Fig. 3.47. Find
a) moments of all forces about $O$.
b) sum of moments of all forces about $O$.
c) moments of all forces about $A$, when no force is acting at $A$.


Figure 3.47: Moment of a force

Solution The given data is

$$
\begin{aligned}
\vec{F}_{1} & =-\hat{i}+\hat{j} \\
\vec{F}_{2} & =\hat{j} \\
\vec{F}_{3} & =-2 \hat{i}-4 \hat{j} \\
\vec{F}_{4} & =2 \hat{i}
\end{aligned}
$$

a) moments of all forces about $O$.

Considering $O$ as the reference point, the position vectors of all these forces are

$$
\begin{aligned}
& \vec{r}_{1}=0 \hat{i}+0 \hat{j} \\
& \vec{r}_{2}=2 \hat{i} \\
& \vec{r}_{3}=-2 \hat{j} \\
& \overrightarrow{4}_{4}=3 \hat{i}+2 \hat{j}
\end{aligned}
$$

respectively and are shown in Fig. 3.48. Using 4.1.10, the moment of force $\vec{F}_{1}=-\hat{i}+\hat{j}$


Figure 3.48: Moment of a force
about $O$ is

$$
\begin{aligned}
\overrightarrow{\tau_{1}} & =\overrightarrow{r_{1}} \times \overrightarrow{F_{1}} \\
& =(0 \hat{i}+0 \hat{j}) \times(-\hat{i}+\hat{j}) \\
& =0 \hat{k} N-m
\end{aligned}
$$

The magnitude of the moment of force $\vec{F}_{1}$ about $O$ is $0 N-m$. The moment of force $\vec{F}_{2}=\hat{j}$ about $O$ is

$$
\begin{aligned}
\overrightarrow{\tau_{2}} & =\overrightarrow{r_{2}} \times \overrightarrow{F_{2}} \\
& =(2 \hat{i}+0 \hat{j}) \times(0 \hat{i}+\hat{j})=2(\hat{i} \times \hat{j}) \\
& =2 \hat{k} N-m
\end{aligned}
$$

The moment of force $\vec{F}_{3}=-2 \hat{i}-4 \hat{j}$ about $O$ is

$$
\begin{aligned}
\overrightarrow{\tau_{3}} & =\overrightarrow{r_{3}} \times \overrightarrow{F_{3}} \\
& =(0 \hat{i}-2 \hat{j}) \times(-2 \hat{i}-4 \hat{j})=4(\hat{j} \times \hat{i}) \\
& =-4 \hat{k} N-m
\end{aligned}
$$

The moment of force $\vec{F}_{4}=2 \hat{i}$ about $O$ is

$$
\begin{aligned}
\overrightarrow{\tau_{4}} & =\overrightarrow{r_{4}} \times \overrightarrow{F_{4}} \\
& =(3 \hat{i}+2 \hat{j}) \times(2 \hat{i})=4(\hat{j} \times \hat{i}) \\
& =-4 \hat{k} N-m
\end{aligned}
$$

b) sum of moments of all forces about $O$.

Let $\vec{\tau}$ be the moment of all forces about $O$, then it is the sum of all moments

$$
\begin{aligned}
\vec{\tau} & =\overrightarrow{\tau_{1}}+\overrightarrow{\tau_{2}}+\overrightarrow{\tau_{3}}+\overrightarrow{\tau_{4}} \\
& =(0+2-4-4) \hat{k} \\
& =-6 \hat{k} N-m
\end{aligned}
$$

c) moments of all forces about $A$, when no force is acting at $A$.

Considering $A$ as the reference point, the position vectors of all these forces are

$$
\begin{aligned}
\vec{r}_{1} & =-2 \hat{i} \\
\overrightarrow{r_{2}} & =\hat{i}+2 \hat{j} \\
\vec{r}_{3} & =-2 \hat{j}-2 \hat{j}
\end{aligned}
$$

respectively and are shown in Fig. 3.49.
Using 4.1.10, the moment of force $\vec{F}_{1}=-\hat{i}+\hat{j}$ about $A$ is


Figure 3.49: Moment of a force

$$
\begin{aligned}
\overrightarrow{\tau_{1}} & =\overrightarrow{r_{1}} \times \overrightarrow{F_{1}} \\
& =2 \hat{i} \times(-\hat{i}+\hat{j}) \\
& =2 \hat{k} N-m
\end{aligned}
$$

The moment of force $\vec{F}_{4}=2 \hat{i}$ about $A$ is

$$
\begin{aligned}
\overrightarrow{\tau_{2}} & =\overrightarrow{r_{2}} \times \overrightarrow{F_{2}} \\
& =(\hat{i}+2 \hat{j}) \times(2 \hat{i}) \\
& =-4 \hat{k} N-m
\end{aligned}
$$

The moment of force $\vec{F}_{3}=-2 \hat{i}-4 \hat{j}$ about $A$ is

$$
\begin{aligned}
\overrightarrow{\tau_{3}} & =\overrightarrow{r_{3}} \times \overrightarrow{F_{3}} \\
& =(-2 \hat{i}-2 \hat{j}) \times(-2 \hat{i}-4 \hat{j}) \\
& =4 \hat{k} N-m
\end{aligned}
$$

Example 3.9.2. A mechanic tightens the nut of a bicycle by exerting a force of 100 N at the outer edge of a 0.1 m long spanner. Find the moment of a force that has tightened it.

Solution The given data is

$$
\begin{aligned}
F & =100 \mathrm{~N} \\
d & =0.1 \mathrm{~m}
\end{aligned}
$$

Let position of the nut be the fixed point $O$, using (4.1.14), the moment of a force about $O$ is

$$
\begin{aligned}
\tau & =100(0.1) \\
& =10 \mathrm{~N}-m
\end{aligned}
$$

### 3.10 Couples

The concept of couple arise, when the lines of action of forces acting on a body do not intersect. Example is, a system of two parallel forces. The magnitude and direction of the resultant of two such forces can be found by vector addition, but the line of action of the resultant can not be determined by parallelogram law of vector addition. Couple can be defined as:
A system of two parallel forces equal in magnitude and opposite in direction is said to form a couple. If the magnitude of a force is $F$, then the couple is written as $(F,-F)$ and is shown in Fig. 3.50. The plane through the line of action of the forces $\vec{F}$ and $-\vec{F}$ is called plane of the couple and the perpendicular distance between them is called arm of the couple. (See Fig. 3.51)


Figure 3.50: Couple of forces


Figure 3.51: Plane and arm of a Couple of forces

### 3.10.1 Moment of a Couple

Consider a rigid body in 3 space system with $O$ as origin and a couple $(\vec{F},-\vec{F})$ is acting on it. Let $\vec{F}$ acts at $A$ whose position vector is $\vec{r}_{1}$ relative to $O$ and $-\vec{F}$ acts at $B$ whose position vector is $\vec{r}_{2}$ relative to $O$ as shown in Fig. 3.52. Then the sum of moments of the two forces about $O$ is

$$
\begin{aligned}
\vec{\tau} & =\overrightarrow{\tau_{1}}+\overrightarrow{\tau_{2}} \\
& =\overrightarrow{r_{1}} \times \vec{F}+\overrightarrow{r_{2}} \times-\vec{F} \\
& =\left(\overrightarrow{r_{1}}-\overrightarrow{r_{2}}\right) \times \vec{F}
\end{aligned}
$$

If

$$
\overrightarrow{A B}=\vec{r}=\overrightarrow{r_{1}}-\overrightarrow{r_{2}}
$$

then the sum of moments of the two forces $\vec{F}$ and $-\vec{F}$ about $O$ is

$$
\vec{\tau}=\vec{r} \times \vec{F}
$$



Figure 3.52: Moment of a couple

If $d$ is the perpendicular distance between the forces and $\theta$ is an angle at the point of application of a force (see Fig. 3.52), then the magnitude of this moment is

$$
\begin{aligned}
\tau & =r F \sin \theta \\
& =F d
\end{aligned}
$$

The moment of a couple is determined by the product of the magnitude of one of the force of the couple and the length of its arm taken with appropriate sign.

Theorem 3.10.1. The effect of a couple upon a rigid body is unaltered if is replaced by any other couple of the same moment lying in the same plane.

Proof Consider a rigid body in 3 space system with $O$ as origin and a couple ( $\vec{F},-\vec{F}$ ) of arm length $d_{1}$ is acting on it. Let $\vec{F}$ acts at $A$ and $-\vec{F}$ acts at $B$ as shown in Fig. ??. From $A$ and $B$ draw two arbitrary parallel lines $A C$ and $B D$ with $d_{2}$ is the distance between them. Resolve the force Let $\vec{F}$ at $A$ into two components, $\vec{P}$ along $A C$ and $\vec{Q}$ along $A B$. Similarly resolve the force $-\vec{F}$ at $B$ into two components, $-\vec{P}$ along $D B$ and $-\vec{Q}$ along $B A$. These components of these forces are as shown in Fig. 3.53.
The forces $\vec{Q}$ and $-\vec{Q}$ acting along the line $A B$, are in equilibrium and can be removed. The forces $\vec{P}$ and $-\vec{P}$ acting at $A$ and $B$ form a couple. Thus the couple of forces $\vec{P}$ and $-\vec{P}$ and arm length $d_{1}$ is replaced by another couple of forces $\vec{P}$ and $-\vec{P}$ and arm length $d_{2}$.
Next we show that moments of the couple $\vec{F}$ and $-\vec{F}$ and $\vec{P}$ and $-\vec{P}$ are equal. We consider force $\vec{P}$ acting at $A$ with components, $\vec{P}$ along $A C$ and $\vec{Q}$ along $A B$. Then by Varignon's theorem the moment of $\vec{F}$ about $B$ is equal to the sum of moments of $\vec{P}$ and $\vec{Q}$ about $B$.

$$
\begin{aligned}
\vec{\tau} & =\overrightarrow{\tau_{1}}+\overrightarrow{\tau_{2}} \\
\overrightarrow{A B} \times \vec{F} & =\overrightarrow{A B} \times \vec{P}+\overrightarrow{A B} \times \vec{Q}
\end{aligned}
$$



Figure 3.53: Equivalent couples

As $B$ lies on the line of action of the force $\vec{Q}$ hence the moment $\overrightarrow{A B} \times \vec{Q}$ is zero and we are left with

$$
\overrightarrow{A B} \times \vec{F}=\overrightarrow{A B} \times \vec{P}
$$

In magnitude we can write

$$
F d_{1}=P d_{2}
$$

Location of a Couple Let the points of application of forces $\vec{P}$ and $-\vec{P}$ be transferred from $A$ and $B$ to any points $C$ and $D$ in their lines of action. Since the location of the points $A$ and $B$ and the directions of $A C$ and $B D$ are arbitrary, the location of couple of forces $\vec{P}$ and $-\vec{P}$ in the plane is also arbitrary (see Fig. 3.58).


Figure 3.54: Location of these couples is arbitrary

### 3.11 Composition of Couples

$n$ Coplanar couples of moments $\overrightarrow{\tau_{1}}, \overrightarrow{\tau_{2}}, \ldots \overrightarrow{\tau_{n}}$ are equivalent to a single couple lying in the same plane, whose momentum $\vec{\tau}$ is given by

$$
\vec{\tau}=\overrightarrow{\tau_{1}}+\overrightarrow{\tau_{2}}+\ldots+\overrightarrow{\tau_{n}}
$$

By the theorem of equivalent couples we can replace the couples of moments $\overrightarrow{\tau_{1}}, \overrightarrow{\tau_{2}}, \ldots \overrightarrow{\tau_{n}}$ by the couples $\left(\vec{F}_{1},-\vec{F}_{1}\right),\left(\vec{F}_{2},-\vec{F}_{2}\right), \ldots\left(\vec{F}_{n},-\vec{F}_{n}\right)$ with a common arm $d$ provided the magnitudes of the forces $\vec{F}_{1}, \overrightarrow{F_{2}}, \overrightarrow{F_{3}}, \ldots \overrightarrow{F_{n}}$ are given by

$$
\begin{aligned}
F_{1} d & =\tau_{1} \\
F_{2} d & =\tau_{2} \\
& \cdot \\
& \cdot \\
& \cdot \\
F_{n} d & =\tau_{n}
\end{aligned}
$$

The forces $\vec{F}_{1}, \vec{F}_{2}, \ldots \vec{F}_{n}$ act in one straight line and $-\vec{F}_{1},-\vec{F}_{2}, \ldots-\vec{F}_{n}$ in a parallel line. Let $\vec{R}$ be the sum of these forces, then

$$
\vec{R}=\vec{F}_{1}+\vec{F}_{2}+\vec{F}_{3}+\ldots+\vec{F}_{n}
$$

and their magnitude is

$$
R=F_{1}+F_{2}+F_{3}+\ldots+F_{n}
$$

Thus we get a couple of forces $(\vec{R},-\vec{R})$ whose arm is of length $d$ and its magnitude is

$$
\begin{aligned}
\tau & =R d \\
& =\left(F_{1}+F_{2}+F_{3}+\ldots+F_{n}\right) d \\
& =F_{1} d+F_{2} d+F_{3} d+\ldots+F_{n} d \\
& =\tau_{1}+\tau_{2}+\ldots+\tau_{n}
\end{aligned}
$$

### 3.12 A Force and a Couple

Theorem 3.12.1. A force $\vec{F}$ acting on a rigid body can be moved to any point $O$ of the rigid body provided a couple is added, whose moment is equal to the moment of $\vec{F}$ about $O$.

Proof Let the given force $\vec{F}$ acts at a point $A$ of the rigid body. At the point $O$ of the body we introduce two forces $\vec{F}$ and $-\vec{F}$ without altering the effect of the original force $\vec{F}$


Figure 3.55: A couple and a force
on the body. The force $\vec{F}$ at $A$ and $-\vec{F}$ at $O$ form a couple $(\vec{F},-\vec{F})$. Hence the given force $\vec{F}$ at $A$ is equivalent to a force $\vec{F}$ at $O$ together with a couple $(\vec{F},-\vec{F})$ whose moment is equal to the moment about $O$ of the force $\vec{F}$ at $A$.
Converse of theorem 3.12.1 is as under

Theorem 3.12.2. A single force and a couple acting in the same plane upon a rigid body are equivalent to a single force acting in a direction parallel to its original direction.

Proof Let the given system consists of a force $\vec{P}$ and a couple $(\vec{Q},-\vec{Q})$. First suppose that the force $\vec{P}$ is not parallel to force $\vec{Q}$. The force $\vec{P}$ acts at $O, \vec{Q}$ at $A$ and $-\vec{Q}$ at $B$. Shift $\vec{P}$ at $A$, to calculate the resultant of $\vec{P}$ and $\vec{Q}$, let it be $\vec{R}$


Figure 3.56: A force and a couple.


Figure 3.57: Resultant of $P$ and $Q$ at $A$.

$$
\vec{R}=\vec{P}+\vec{Q}
$$

It acts at $A$ along the line $A C$. We can move $\vec{R}$ with its components at $D$ as shown in the Fig. Now the forces $\vec{Q}$ and $-\vec{Q}$ acting along $B D$ balance each other. Therefore the given system is equivalent to a single force $\vec{P}$ acting at $D$.


Figure 3.58: Resultant of $P$ and $Q$ at $B$.

### 3.13 Reduction of a System of Coplanar Forces to one Force and one Couple

Consider the forces $\vec{F}_{1}, \vec{F}_{2}, \vec{F}_{3}, \ldots \vec{F}_{n}$ acting in one plane upon a rigid body at the points the forces $A_{1}, A_{2}, A_{3}, \ldots A_{n}$. Let $O$ be any point coplanar with the forces. According to


Figure 3.59: $n$ forces are acting on a rigid body.
theorem 3.12 .1 any force $\vec{F}_{i}$ acting at $A_{i}$ is equivalent to a force $\vec{F}_{i}$ acting at $O$ together with a couple whose moment $\tau_{i}$ is equal to the moment of $\vec{F}_{i}$ about $O$. Transforming all the forces to act at $O$ we obtain a system of forces $\vec{F}_{1}, \overrightarrow{F_{2}}, \vec{F}_{3}, \ldots \vec{F}_{n}$ acting at $O$ and a system of couples of moments $\overrightarrow{\tau_{1}}, \overrightarrow{\tau_{2}}, \ldots \overrightarrow{\tau_{n}}$.
The concurrent forces applied at $O$ can by replaced by their resultant $\vec{R}$ acting at the same


Figure 3.60: A couple and a force.
point. Similarly, by the theorem of the composition of couples, all the coplanar couples can be replaced by a single couple of moment $\tau$.
The force $\vec{R}$ and the couple of moment $\vec{\tau}$ are given by

$$
\begin{aligned}
\vec{R} & =\sum_{i=1}^{n} \vec{F}_{i} \\
\vec{\tau} & =\sum_{i=1}^{n} \overrightarrow{\tau_{i}}
\end{aligned}
$$

## Exercises

1. Two concurrent and coplanar forces of magnitudes $10 N$ and $15 N$ are acting on a body. Find their resultant if the angle between them is
a) $30^{\circ}$.
b) $45^{\circ}$.
c) $60^{\circ}$.
d) $75^{\circ}$.
e) $90^{\circ}$.
f) $180^{\circ}$.
2. Two concurrent and coplanar forces $\vec{F}_{1}$ and $\vec{F}_{2}$ are acting on a body. If $\vec{F}_{1}$ makes an angle of $30^{\circ}$ and $\vec{F}_{2}$ makes an angle of $40^{\circ}$ with the resultant of magnitude 75 N . Find $F_{1}$ and $F_{2}$.
3. Consider two forces of equal magnitude are acting on a body. If the forces are acting at such an angle that their resultant also has same magnitude.
a) Find the angle between the forces.
b) Find the angle between each force and the resultant force.
4. The forces $\vec{F}_{1}=2 \hat{i}, \vec{F}_{2}=\hat{i}+\hat{j}, \vec{F}_{3}=2 \hat{i}-4 \hat{j}$ and $\vec{F}_{4}=2 \hat{i}+\hat{j}$ are acting on a body. Determine their resultant.
5. Two concurrent and coplanar forces are acting on a body. If the magnitude of one force is double of the other, then their resultant is 160 N . If the direction of larger force is reversed and the other remained unaltered, then the magnitude of their resultant is 120 N . Determine the magnitude of each force and the angle between them.
6. In example 3.9.1 find moments of all forces about $B$ and $C$.
7. The forces $\vec{F}_{1}=-\hat{i}+\hat{j}, \vec{F}_{2}=\hat{j}, \vec{F}_{3}=-2 \hat{i}-4 \hat{j}$ and $\vec{F}_{4}=2 \hat{i}$ are acting at $D(-1,1)$, $C(1,2), A(2,0)$ and $B(0,-2)$ respectively as shown in the Fig. 3.61. Find
a) moments of all forces about $O$.
b) sum of moments of all forces about $O$.
c) moments of all forces about $A, B, C$ and $D$.
8. A force $\vec{F}=4 N \hat{i}+3 N \hat{j}$ is applied on an object of mass 4 kg at point $P(5 \mathrm{~m}, 4 \mathrm{~m})$. If $z$-axis is a fixed axis in the object find the magnitude and the direction of the torque.
9. A force $\vec{F}=4 N \hat{i}+3 N \hat{j}-2 N \hat{k}$ is applied on an object of mass 2 kg at point $P(5 m, 4 m, 2 m)$. Find the torque of the force $\vec{F}$ about $A$ whose position vector relative to origin $O$ is $\vec{r}_{A}=1 m \hat{i}+3 m \hat{j}+2 m \hat{k}$.


Figure 3.61: Moment of a force

## Chapter 4

## Equilibrium

According to Newtons second law of motion, a body will move with a velocity if it is acted upon by a force. When a number of concurrent forces acts on a body, it will move in the direction of the resultant force. However, if another force, which is equal in magnitude of the resultant but opposite in direction, is applied to a body, the body comes to rest. Then the sum of all the forces acting on the body is zero and the body is said to be in equilibrium. Equilibrium is also known as balancing as the forces are balanced .
Equilibrant of a system of forces is a single force, which acts along with the other forces to keep the body in equilibrium.

### 4.1 Equilibrium

The external forces acting on the body may be
(a) Concurrent and coplanar forces.
(b) Non-concurrent and coplanar forces.
(c) Concurrent forces in space.

### 4.1.1 Conditions of Equilibrium

If a system of concurrent and coplanar forces is acting on a body. The body will be in equilibrium if the following conditions are satisfied.

1. The vector sum of all the external forces that act on the particle/body must be zero.
2. The vector sum of all external torques that act on the body, measured about any possible point, must also be zero.

## First condition of equilibrium:

The vector sum of all the external forces that act on the particle/body must be zero.
According to first condition, a particle is in equilibrium if the resultant of all the forces acting on it is zero. If $\vec{R}$ is the resultant of $n$ forces $\vec{F}_{1}, \vec{F}_{2}, \ldots \overrightarrow{F_{n}}$ acting on a body, then accordingly

$$
\begin{equation*}
\vec{R}=\sum_{k=1}^{n} \vec{F}_{k}=\overrightarrow{0} \tag{4.1.1}
\end{equation*}
$$

If $R_{X}, R_{Y}$ and $R_{Z}$ are rectangular components of $\vec{R}$, then (4.1.1) can be written as

$$
\begin{equation*}
\left\langle R_{X}, R_{Y}, R_{Z}\right\rangle=\langle 0,0,0\rangle \tag{4.1.2}
\end{equation*}
$$

or

$$
\begin{aligned}
& R_{X}=0 \\
& R_{Y}=0 \\
& R_{Z}=0
\end{aligned}
$$

are the necessary and sufficient conditions of equilibrium of equilibrium of a particle.
If the acting forces are coplanar, then (4.1.2) reduces to

$$
\begin{align*}
\left\langle R_{X}, R_{Y}\right\rangle & =\langle 0,0\rangle  \tag{4.1.3}\\
R_{X} & =0 \\
R_{Y} & =0
\end{align*}
$$

Next are some theorems regarding the equilibrium of a particle.

Theorem 4.1.1. The Triangle of Forces: If a particle is in equilibrium under the action of three concurrent and coplanar forces, these forces may be represented in magnitude and direction (but not in position) by the sides of a triangle, taken in order.

Proof: Let $\vec{P}, \vec{Q}$ and $\vec{R}$ are three concurrent and coplanar forces acting in a body at $O$ and keep it in equilibrium. By parallelogram law, the resultant of two forces $P$ and $Q$ is given by the diagonal of parallelogram $O A D B$ as shown in Fig 4.1 (b). Since the body is in equilibrium, this resultant will be equal in magnitude and opposite in direction to $\vec{R}$. Hence If a particle is in equilibrium under the action of three concurrent and coplanar forces, these forces may be represented in magnitude and direction (but not in position) by the sides of a triangle, taken in order as shown in Fig 4.1 (d).

(a)

(b)

(c)

Figure 4.1: Triangle of forces

Theorem 4.1.2. The Polygon of Forces: If a particle is in equilibrium under the action of several forces, these forces may be represented in magnitude and direction (but not in position) by the sides of a closed polygon, taken in order.

Theorem 4.1.3. Lami's Theorem: If three coplanar forces acting at a point in a body and keep it in equilibrium, then magnitude each force is directly proportional to the sine of the angle between the other two forces.

Proof: Let $\vec{P}, \vec{Q}$ and $\vec{R}$ are three coplanar forces acting in a body at $O$ and keep it in equilibrium. Let $\alpha$ be the angles between forces $\vec{Q}$ and $\vec{R}, \beta$ be the angles between forces $\vec{R}$ and $\vec{P}$ and $\gamma$ be the angles between forces $\vec{P}$ and $\vec{Q}$. Then by Lami's theorem:

$$
\begin{equation*}
\frac{P}{\sin \alpha}=\frac{Q}{\sin \beta}=\frac{R}{\sin \gamma} \tag{4.1.4}
\end{equation*}
$$

Next by Law of triangle of forces, these forces may be represented in magnitude and direction (but not in position) by three sides of a triangle taken in order. We obtain a triangle of forces $O A D$ as shown in Fig. 4.2. In this triangle $O A=P, A D=Q$ and $D O=R$.
Its internal angles are $\angle O D A=\pi-\alpha, \angle A O D=\pi-\beta$ and $\angle O A D=\pi-\gamma$.
Also the forces $\vec{P}$ and $\vec{Q}$ are coplanar, completing the parallelogram, its diagonal will give the resultant of $\vec{P}$ and $\vec{Q}$.


Figure 4.2: Lami's theorem

Next by law of sines to triangle $O A D$, we can write

$$
\begin{aligned}
\frac{Q A}{\sin (\pi-\alpha)} & =\frac{A D}{\sin (\pi-\beta)}=\frac{D O}{\sin (\pi-\gamma)} \\
\frac{P}{\sin \alpha} & =\frac{Q}{\sin \beta}=\frac{R}{\sin \gamma}
\end{aligned}
$$

Example 4.1.1. Three forces $\vec{F}_{1}, \vec{F}_{2}$ and $\vec{F}_{3}$ keeps a body in equilibrium. $\vec{F}_{1}$ acts towards north, $\vec{F}_{2}$ towards east-south and $\vec{F}_{3}$ towards south-west. If the magnitude of $\vec{F}_{1}$ is 8 N , find the magnitude of other two forces by using
(a) Equilibrium conditions.
(b) Law of triangle of force.
(c) Lami's theorem.

## Solution

(a) Magnitude of other two forces by using equilibrium conditions.

Three forces acting on a particle are shown in Fig. 4.3 (a). The horizontal components of


Figure 4.3: Triangle of forces
these forces are

$$
\begin{aligned}
& F_{1 X}=0 \\
& F_{2 X}=F_{2} \cos \left(-\frac{\pi}{4}\right)=\frac{1}{\sqrt{2}} F_{2} \\
& F_{3 X}=F_{3} \cos \left(\frac{5 \pi}{4}\right)=-\frac{1}{\sqrt{2}} F_{3}
\end{aligned}
$$

The vertical components of these forces are

$$
\begin{aligned}
& F_{1 Y}=F_{1}=8 N \\
& F_{2 Y}=F_{2 Y} \sin \left(-\frac{\pi}{4}\right)=-\frac{1}{\sqrt{2}} F_{2} \\
& F_{3 Y}=F_{3 Y} \sin \left(\frac{5 \pi}{4}\right)=-\frac{1}{\sqrt{2}} F_{3}
\end{aligned}
$$

Since particle is in equilibrium under the action of these forces, then by (4.1.3), we have

$$
\begin{align*}
\frac{1}{\sqrt{2}} F_{2}-\frac{1}{\sqrt{2}} F_{3} & =0  \tag{4.1.5}\\
8-\frac{1}{\sqrt{2}} F_{2}-\frac{1}{\sqrt{2}} F_{3} & =0 \tag{4.1.6}
\end{align*}
$$

(4.1.5) implies that

$$
\begin{equation*}
F_{2}=F_{3} \tag{4.1.7}
\end{equation*}
$$

Using (4.1.7) in (4.1.6), we have

$$
\begin{equation*}
F_{2}=F_{3}=4 \sqrt{2} N \tag{4.1.8}
\end{equation*}
$$

(4.1.8) gives the other two forces which are equal in magnitude.
(b) Magnitude of other two forces by using law of triangle of force.

Since the particle is in equilibrium under the action of three concurrent and coplanar forces, so these forces can be represented in magnitude and direction (but not in position) by three sides of a triangle, taken in order. This triangle of forces is shown in Fig. 4.4. In triangle


Figure 4.4: Triangle of forces
$O A B$

$$
\begin{aligned}
\overrightarrow{O A} & =\vec{F}_{1} \\
\overrightarrow{B O} & =\vec{F}_{2} \\
\overrightarrow{A B} & =\vec{F}_{3}
\end{aligned}
$$

and

$$
\begin{aligned}
& \angle O A B=45^{\circ} \\
& \angle A O B=45^{\circ} \\
& \angle A B O=90^{\circ}
\end{aligned}
$$

Since two angles are equal, each is $45^{\circ}$. Their corresponding sides will also be equal i.e

$$
\begin{aligned}
B O & =A B \\
F_{2} & =F_{3}
\end{aligned}
$$

From right triangle $O A B$, we can write

$$
\begin{aligned}
F_{1} & =\sqrt{F_{2}^{2}+F_{3}^{2}} \\
8 & =\sqrt{2} F_{2}
\end{aligned}
$$

or

$$
F_{2}=F_{3}=4 \sqrt{2} N
$$

(c) Magnitude of other two forces by using Lami's theorem.

The force $F_{1}$ is along vertical and $F_{2}, F_{3}$ are making angles $45^{\circ}$ with the horizontal, so the angles between these forces are (see Fig. 4.5 ):


Figure 4.5: Lami's theorem

Angle between $F_{1}$ and $F_{2}=135^{\circ}$
Angle between $F_{1}$ and $F_{3}=135^{\circ}$
Angle between $F_{2}$ and $F_{3}=90^{\circ}$
Since particle is in equilibrium under the action of these forces, then by (4.1.4), we have

$$
\begin{align*}
\frac{F_{1}}{\sin 90^{\circ}} & =\frac{F_{2}}{\sin 135^{\circ}}=\frac{F_{3}}{\sin 135^{\circ}} \\
\frac{8}{1} & =\frac{F_{2}}{\frac{1}{\sqrt{2}}}=\frac{F_{3}}{\frac{1}{\sqrt{2}}} \tag{4.1.9}
\end{align*}
$$

From (4.1.9), we can write

$$
F_{2}=F_{3}=4 \sqrt{2} N
$$



Figure 4.6: Equilibrium under three forces

Example 4.1.2. A particle is in equilibrium under the action of three concurrent and coplanar forces $\vec{P}, \vec{Q}$ and $\vec{R}$. If $\vec{P}$ acts along horizontal towards right, the angle between $\vec{P}$ and $\vec{Q}$ is double of the angle between $\vec{P}$ and $\vec{R}$ as shown in Fig. 4.6, then prove that

$$
R^{2}=Q(Q-P)
$$

by using
(a) Equilibrium conditions.
(b) Law of triangle of force.
(c) Lami's theorem.

## Solution

(a) Equilibrium conditions.

Take cartesian coordinate system, and the origin as the point of application of the forces. Let the force $\vec{P}$ acts along positive $x$ axis. Let the angle between $\vec{P}$ and $\vec{R}$ is $\theta$, then the angle between $\vec{P}$ and $\vec{Q}$ will be $-2 \theta$ as shown in Fig. 4.11. We can say that $\vec{P}$ makes zero angle with $x$ axis, $\vec{R}$ makes $\theta$ angle with $x$ axis and $\vec{Q}$ makes $2 \theta$ angle with $x$ axis as shown in Fig. 4.11. The horizontal components of these forces are

$$
\begin{aligned}
P_{X} & =P \\
R_{X} & =R \cos \theta \\
Q_{X} & =Q \cos (2 \pi-2 \theta)=Q \cos 2 \theta
\end{aligned}
$$



Figure 4.7: Equilibrium under three forces

The vertical components of these forces are

$$
\begin{aligned}
P_{Y} & =0 \\
R_{Y} & =R \sin \theta \\
Q_{Y} & =Q \sin (2 \pi-2 \theta)=-Q \sin 2 \theta
\end{aligned}
$$

Since particle is in equilibrium under the action of these forces, then by (4.1.3), we have

$$
\begin{align*}
P+Q \cos 2 \theta+R \cos \theta & =0  \tag{4.1.10}\\
R \sin \theta-Q \sin 2 \theta & =0 \tag{4.1.11}
\end{align*}
$$

Since $\sin 2 \theta=2 \sin \theta \cos \theta$, then (4.1.11) can be written as

$$
\begin{equation*}
2 Q \sin \theta \cos \theta=R \sin \theta \tag{4.1.12}
\end{equation*}
$$

Also $\theta \neq 0$ i.e $\sin \theta \neq 0$, then (4.1.12) can be written as

$$
\begin{equation*}
\cos \theta=\frac{R}{2 Q} \tag{4.1.13}
\end{equation*}
$$

Since $\cos 2 \theta=2 \cos ^{2} \theta-1$, then (4.1.10) can be written as

$$
\begin{equation*}
P+Q\left(2 \cos ^{2} \theta-1\right)+R \cos \theta=0 \tag{4.1.14}
\end{equation*}
$$

Using (4.1.13) in (4.1.14), we have

$$
P+Q\left(2\left(\frac{R}{2 Q}\right)^{2}-1\right)+R \frac{R}{2 Q}=0
$$

After simplification we get

$$
R^{2}=Q(Q-P)
$$

(b) Law of triangle of force.

Since the particle is in equilibrium under the action of three concurrent and coplanar forces, so these forces can be represented in magnitude and direction (but not in position) by three sides of a triangle, taken in order. This triangle of forces is shown in Fig. 4.8. In triangle


Figure 4.8: Triangle of forces
$O A B$, the forces are not in order. One force seems to be the resultant of other two forces.
(c) Lami's theorem.

Take cartesian coordinate system, and the origin as the point of application of the forces. Let the force $\vec{P}$ acts along positive $x$ axis. Let the angle between $\vec{P}$ and $\vec{R}$ is $\theta$, then the angle between $\vec{P}$ and $\vec{Q}$ is $\theta$. The angle between $\vec{Q}$ and $\vec{R}$ is $2 \pi-3 \theta$. Since particle is in


Figure 4.9: Lami's theorem
equilibrium under the action of these forces, then by (4.1.4), we have

$$
\begin{align*}
\frac{P}{\sin (2 \pi-3 \theta)} & =\frac{Q}{\sin \theta}=\frac{R}{\sin 2 \theta} \\
\frac{P}{\sin (-3 \theta)} & =\frac{Q}{\sin \theta}=\frac{R}{\sin 2 \theta} \\
-\frac{P}{\sin 3 \theta} & =\frac{Q}{\sin \theta}=\frac{R}{\sin 2 \theta} \tag{4.1.15}
\end{align*}
$$

From (4.1.15), we can write

$$
-\frac{P}{\sin 3 \theta}=\frac{Q}{\sin \theta}
$$

which implies that

$$
\begin{equation*}
P \sin \theta+Q \sin 3 \theta=0 \tag{4.1.16}
\end{equation*}
$$

Also from (4.1.15), we can write

$$
\begin{gather*}
\frac{Q}{\sin \theta}=\frac{R}{\sin 2 \theta} \\
R \sin \theta-Q \sin 2 \theta=0 \tag{4.1.17}
\end{gather*}
$$

which is (4.1.12), then we have (4.1.13), see (a).
Next use trigonometric relation $\sin 3 \theta=3 \sin \theta-4 \sin ^{3} \theta$ in (4.1.16)

$$
\begin{equation*}
P \sin \theta+Q\left(3 \sin \theta-4 \sin ^{3} \theta\right)=0 \tag{4.1.18}
\end{equation*}
$$

Since $\sin \theta \neq 0$, then (4.1.18) can be written as

$$
\begin{aligned}
P+Q\left(3-4 \sin ^{2} \theta\right) & =0 \\
P+Q\left(3-4+4 \cos ^{2} \theta\right) & =0 \\
P+Q\left(-1+4 \cos ^{2} \theta\right) & =0
\end{aligned}
$$

Next using (4.1.13) in (4.1.19) will give the desired result.

Example 4.1.3. A particle is in equilibrium under the action of three concurrent and coplanar forces $\vec{P}, \vec{Q}$ and $\vec{R}$ as shown in Fig. 4.10, then show that

$$
R^{2}=Q(Q+P)
$$

by using


Figure 4.10: Equilibrium under three forces
(a) Equilibrium conditions.
(b) Law of triangle of force.
(c) Lami's theorem.

## Solution

(a) Equilibrium conditions.

Take cartesian coordinate system, and the origin as the point of application of the forces. Let the force $\vec{P}$ acts along positive $x$ axis. Let the angle between $\vec{P}$ and $\vec{R}$ is $\theta$, then the angle between $\vec{P}$ and $\vec{Q}$ will be $-2 \theta$ as shown in Fig. 4.11. We can say that $\vec{P}$ makes zero angle with $x$ axis, $\vec{R}$ makes $\theta$ angle with $x$ axis and $\vec{Q}$ makes $2 \theta$ angle with $x$ axis as shown in Fig. 4.11. The horizontal components of these forces are


Figure 4.11: Equilibrium under three forces

$$
\begin{aligned}
P_{X} & =-P \\
R_{X} & =R \cos \theta \\
Q_{X} & =Q \cos (2 \pi-2 \theta)=Q \cos 2 \theta
\end{aligned}
$$

The vertical components of these forces are

$$
\begin{aligned}
P_{Y} & =0 \\
R_{Y} & =R \sin \theta \\
Q_{Y} & =Q \sin (2 \pi-2 \theta)=-Q \sin 2 \theta
\end{aligned}
$$

Since particle is in equilibrium under the action of these forces, then by (4.1.3), we have

$$
\begin{align*}
-P+Q \cos 2 \theta+R \cos \theta & =0  \tag{4.1.19}\\
R \sin \theta-Q \sin 2 \theta & =0 \tag{4.1.20}
\end{align*}
$$

Since $\sin 2 \theta=2 \sin \theta \cos \theta$, then (4.1.20) can be written as

$$
\begin{equation*}
2 Q \sin \theta \cos \theta=R \sin \theta \tag{4.1.21}
\end{equation*}
$$

Also $\theta \neq 0$ i.e $\sin \theta \neq 0$, then (4.1.21) can be written as

$$
\begin{equation*}
\cos \theta=\frac{R}{2 Q} \tag{4.1.22}
\end{equation*}
$$

Since $\cos 2 \theta=2 \cos ^{2} \theta-1$, then (4.1.19) can be written as

$$
\begin{equation*}
-P+Q\left(2 \cos ^{2} \theta-1\right)+R \cos \theta=0 \tag{4.1.23}
\end{equation*}
$$

Using (4.1.22) in (4.1.23), we have

$$
-P+Q\left(2\left(\frac{R}{2 Q}\right)^{2}-1\right)+R \frac{R}{2 Q}=0
$$

After simplification we get

$$
R^{2}=Q(Q+P)
$$

(b) Law of triangle of force.

Since the particle is in equilibrium under the action of three concurrent and coplanar forces, so these forces can be represented in magnitude and direction (but not in position) by three sides of a triangle, taken in order. This triangle of forces is shown in Fig. 4.12.
Apply law of sine's on triangle $O A C$

$$
\begin{align*}
\frac{P}{\sin (\pi-3 \theta)} & =\frac{Q}{\sin \theta}=\frac{R}{\sin 2 \theta} \\
\frac{P}{\sin 3 \theta} & =\frac{Q}{\sin \theta}=\frac{R}{\sin 2 \theta} \tag{4.1.24}
\end{align*}
$$



Figure 4.12: Triangles of forces

From (4.1.24), we can write

$$
\frac{P}{\sin 3 \theta}=\frac{Q}{\sin \theta}
$$

which implies that

$$
\begin{equation*}
P \sin \theta-Q \sin 3 \theta=0 \tag{4.1.25}
\end{equation*}
$$

Also from (4.1.24), we can write

$$
\begin{gathered}
\frac{Q}{\sin \theta}=\frac{R}{\sin 2 \theta} \\
R \sin \theta-Q \sin 2 \theta=0
\end{gathered}
$$

which gives (4.1.21), then we have (4.1.22), see (a).
Next use trigonometric relation $\sin 3 \theta=3 \sin \theta-4 \sin ^{3} \theta$ in (4.1.25).

$$
\begin{equation*}
P \sin \theta-Q\left(3 \sin \theta-4 \sin ^{3} \theta\right)=0 \tag{4.1.26}
\end{equation*}
$$

Since $\sin \theta \neq 0$, then (4.1.26) can be written as

$$
\begin{align*}
P-Q\left(3-4 \sin ^{2} \theta\right) & =0 \\
P-Q\left(3-4+4 \cos ^{2} \theta\right) & =0 \\
P-Q\left(-1+4 \cos ^{2} \theta\right) & =0 \tag{4.1.27}
\end{align*}
$$

Next using (4.1.22) in (4.1.27) will give the desired result.
(c) Lami's theorem.


Figure 4.13: Lami's theorem

Take cartesian coordinate system, and the origin as the point of application of the forces. Let the force $\vec{P}$ acts along negative $x$ axis. Let the angle between $\vec{P}$ and $\vec{R}$ is $\pi-\theta$, then the angle between $\vec{P}$ and $\vec{Q}$ is $\pi-\theta$. The angle between $\vec{Q}$ and $\vec{R}$ is $3 \theta$ as shown in Fig. 4.13. Since particle is in equilibrium under the action of these forces, then by (4.1.4), we have

$$
\begin{aligned}
\frac{P}{\sin 3 \theta} & =\frac{Q}{\sin (\pi-\theta)}=\frac{R}{\sin (\pi-2 \theta)} \\
\frac{P}{\sin 3 \theta} & =\frac{Q}{\sin \theta}=\frac{R}{\sin 2 \theta} \\
\frac{P}{\sin 3 \theta} & =\frac{Q}{\sin \theta}=\frac{R}{\sin 2 \theta}
\end{aligned}
$$

which is (4.1.24), next we can use (b) to obtain the desire result.
Example 4.1.4. In example 4.1.3, if $\theta=30^{\circ}$ and $P=10 N$, then find the other two forces.
Solution Put $\theta=30^{\circ}$ and $P=10 N$ in (4.1.24)

$$
\begin{aligned}
\frac{10}{\sin 3\left(30^{\circ}\right)} & =\frac{Q}{\sin 30^{\circ}}=\frac{R}{\sin 2\left(30^{\circ}\right)} \\
\frac{10}{\sin 90^{\circ}} & =\frac{Q}{\sin 30^{\circ}}=\frac{R}{\sin 60^{\circ}} \\
10 & =2 Q=1.1547 R
\end{aligned}
$$

and finally we have

$$
\begin{aligned}
Q & =5 N \\
R & =8.66 \mathrm{~N}
\end{aligned}
$$

Note: Triangle $O A C$ is right angle triangle. Then by Pythagoras theorem we have

$$
(10)^{2}=(5)^{2}+(8.66)^{2}
$$

### 4.2 Moment of a Force and Equilibrium

A body is balanced if the sum of clockwise moments acting on the body is equal to the sum of anticlockwise moments acting on it.

Example 4.2.1. A beam of length 2 meter, is supported at its middle point $O$ as shown in Fig. 4.14. $A$ body of weight 50 N is suspended at point $A, 80 \mathrm{~cm}$ away from $O$. To the


Figure 4.14: Balancing weights
other side, at $B$, another block is suspended 50 cm away from $O$ to balance the rod. Find the weight of the second block.

Solution The given problem can be solved by considering clockwise and anticlockwise moments acting on the body with $O$ as the fixed point. The given data is

$$
\begin{aligned}
W_{1} & =50 \mathrm{~N} \\
O A=d_{1} & =80 \mathrm{~cm}=0.8 \mathrm{~m} \\
O B=d_{2} & =50 \mathrm{~cm}=0.5 \mathrm{~m}
\end{aligned}
$$

see Fig. 4.15 , and we have to find $W_{2}$ Let $\tau_{1}$ be the anticlockwise moment of $W_{1}$ about $O$


Figure 4.15: Balancing weights
and $\tau_{2}$ be the clockwise moment of $W_{2}$ about $O$. Then

$$
\begin{aligned}
& \tau_{1}=50(0.8)=40 N-m \\
& \tau_{2}=W_{2}(0.5) N-m
\end{aligned}
$$

By principle of moments, we can write

$$
\begin{aligned}
\tau_{1} & =\tau_{2} \\
40 & =0.5 W_{2}
\end{aligned}
$$

or

$$
W_{2}=80 \mathrm{~N}
$$

Thus, weight of the other block is 80 N

## Exercises

1. Three forces $\vec{F}_{1}, \vec{F}_{2}$ and $\vec{F}_{3}$ keeps a body in equilibrium. $\vec{F}_{1}$ acts towards south, $\vec{F}_{2}$ towards east-north and $\vec{F}_{3}$ towards north-west. If the magnitude of $\vec{F}_{1}$ is $10 N$, find the magnitude of other two forces by using
(a) Equilibrium conditions.
(b) Law of triangle of force.
(c) Lami's theorem.
2. The three forces in the diagram are in equilibrium. Find $\vec{F}$ and $\theta$ ? by using


Figure 4.16: Three forces
(a) Equilibrium conditions.
(b) Law of triangle of force.
(c) Lami's theorem.
3. A beam of length 3 meter, is supported at its middle point $O$ as shown in Fig. 4.17. A body of weight $40 N$ is suspended at point $A, 1.5 \mathrm{~m}$ away from $O$. To the other


Figure 4.17: Balancing weights
side, at $B$, another block is suspended 1 m away from $O$ to balance the rod. Find the weight of the second block.

## Chapter 5

## Friction

### 5.1 Friction

When a body moves or tends to move upon another body, an opposing force (opposite to the direction of motion) appears between their surfaces, known as the force of friction. Its line of action is tangential to the contacting surfaces. The magnitude of this force depends on the roughness of surfaces.
Friction is a part of our daily life, may be useful or not. It appears in almost every movement. We can walk on the ground because of friction. Friction is useful in power transmission by belts. It is useful in appliances like brakes, bolts, screw jacks, etc. It is undesirable in bearing and moving machine parts where it results in loss of energy and, thereby, reduces efficiency of the machine.

## Smooth Contact

If the force of friction between two bodies in contact with each other is zero, the contact is said to be smooth.

## Rough Contact

If the force of friction between two bodies in contact with each other is not zero, the contact is said to be rough.
In nature no perfectly smooth body exist. Each body is capable of exerting some force of friction, although it may be quite small as in the case of glass, steel etc.

### 5.1.1 Types of Friction

There are two types of friction:

1. Dry friction: When the surfaces in contact are un-lubricated surfaces or dry surfaces, the friction is dry friction.
2. Fluid friction: When the surfaces in contact are lubricated surfaces, the friction is fluid friction. In this case there is no direct contact between the surfaces.

The dry friction can be further subdivided based on how the two surfaces are at rest or moving relative to each other.

## a) Static friction

The friction that exists between two surfaces that are not moving relative to each other.
b) Kinetic friction

The friction that exists between two surfaces that are moving relative to each other. In any situation, the static friction is greater than the kinetic friction.

### 5.1.2 Static and Kinetic Friction

Consider a block of mass $m$ rests on a plane surface as shown in Fig. 5.1. The weight $\vec{W}$ acts downward and is balanced by an upward normal reaction $\vec{R}$ offered by the surface. Next a pull force $\vec{F}$ is applied to the block such that it tends to move. The motion is opposed by a frictional force $\vec{F}_{r}$, equal and opposite to $\vec{F}$. The resultant of normal reaction and the applied force is called resultant reaction denoted be $\vec{S}$, making an angle $\lambda$ with the normal reaction. If we increase the pull or attractive force, the fractional force will also increase


Figure 5.1: Friction
and hence the resultant reaction and inclination will increase. Thus, with increase of the pull force, the frictional force, the resultant reaction and its inclination will increase, till the body tends to move. The frictional resistance offered upto that instant is known as static friction.
When the body is just on the point of sliding, but actual sliding has not started, the ultimate value of static friction is called limiting friction or maximum static friction. The condition, when all the forces are just in equilibrium and the body has a tendency to move, is called limiting equilibrium position. When a body moves relative to another body, the resisting force between them is called kinetic or sliding friction.
Thus four possible cases arise when two rough bodies are in contact with each other:

1. No force of friction is acting between them.
2. The force of friction is acting but neither body is on the point of sliding along the other. The friction in this case is non-limiting.
3. One of the bodies is on the point of sliding along the other. The friction in this case is limiting.
4. One body slide along the other. The force of friction in such a case which opposes motion is the kinetic friction.

Table 5.1: Coefficients of Static and Kinetic friction between different surfaces.

| Surfaces | $\mu_{s}$ | $\mu_{k}$ |
| :--- | :--- | :--- |
| steel on steel | 0.74 | 0.57 |
| aluminum on steel | 0.61 | 0.47 |
| copper on steel | 0.53 | 0.36 |
| rubber on concrete | 1.0 | 0.8 |
| wood on wood | l.25 <br>  <br> depends on the type of wood | 0.2 |
| glass on glass | 0.94 | 0.4 |
| waxed wood on wet snow | 0.14 | 0.1 |
| waxed wood on dry snow | - | 0.04 |
| metal on metal (lubricated) | 0.15 | 0.06 |
| ice on ice | 0.14 | 0.03 |
| teflon on teflon | 0.04 | 0.04 |
| synovial joints in humans | 0.01 | 0.003 |

### 5.1.3 Laws of Dry Friction

The force of friction is self-adjusting force, obeying some definite laws. These laws are stated as below.

1. The direction of friction is opposite to the direction in which the body moves or tends to move.
2. The magnitude of friction upto a certain extent, is equal to the force, tending to produce motion.
3. The frictional force depends upon the nature of the surfaces in contact.
4. The amount of friction is independent of the areas and shape of the surfaces in contact provided the normal pressure remains unaltered.
5. For moderate speeds, frictional force is independent of the relative velocities of the bodies in contact.
6. Only a certain amount of friction can be called into play and in each particular case it can not exceed a certain limit. The maximum amount of friction which can be called into play is called limiting friction.
7. The magnitude of the limiting friction (for given surfaces) bears a constant ratio $\mu$ to the normal pressure between the surfaces

The magnitude of limiting friction is denoted by $F_{r}$ and the normal reaction by $R$. Then the coefficient of friction is

$$
\begin{equation*}
\mu=\frac{F_{r}}{R} \tag{5.1.1}
\end{equation*}
$$

or

$$
F_{r}=\mu R
$$

Limiting Equilibrium Equilibrium under the influence of limiting friction is called limiting equilibrium.

### 5.1.4 Angle of Friction

If $F_{r}$ is the magnitude of limiting fraction and $R$ be the normal reaction as shown in the Fig. 5.2. In case of limiting friction the angle between the resultant reaction and the normal reaction is called the angle of friction and is denoted by $\phi$. From Fig. 5.2, we can write


Figure 5.2: Angle of friction

$$
\begin{aligned}
R & =S \cos \phi \\
F_{r} & =S \sin \phi
\end{aligned}
$$

Using above results, (5.1.1) can be written as

$$
\begin{align*}
\mu & =\frac{F_{r}}{R}=\frac{S \sin \phi}{S \cos \phi} \\
& =\tan \phi \tag{5.1.2}
\end{align*}
$$

(5.1.2) gives the relation between the angle of friction and the coefficient of friction. Its inverse is

$$
\begin{equation*}
\phi=\tan ^{-1} \mu \tag{5.1.3}
\end{equation*}
$$

gives the angle of friction.
The magnitude of the angle of friction is usually denoted by $\lambda$ so that $\lambda=\tan ^{-1} \mu$ or $\mu=\tan \lambda$. The resultant reaction can make any angle with the normal with magnitude $\lambda$, but cannot make a greater angle, because $F_{r}$ cannot exceed $\mu R$.

### 5.1.5 Cone of Friction

It is defined as the right circular cone with vertex at the point of contact of the two surfaces, its axis is in the direction of normal reaction $N$ and its semi vertical angle is equal to angle of friction. (see Fig. 5.3)
For any real contact of the bodies $\vec{S}$ lies within the cone and in case of limiting friction $\vec{S}$ lies on a generator of this cone.

### 5.1.6 Role of Friction (Benefits)

Friction plays an important role in our daily life. Some of them are as following:

- Walking: When a person walks, he pushes the ground backward with his feet to cause a forward reaction. If there were no friction our feet will slip and we would not be able to walk.
- Rolling Motion: All rolling motion is caused by static friction.

The force of friction encompasses the entire operation of a car and makes the tires possible to turn on the road. Tires are designed with a degree of tread that helps maintain a high degree of friction to allow the tire to grip tightly to the road and keep control. If there was no tread, there would be no friction and the car would not be able to stop at the appropriate time.

- Using computers mouse pad: Friction occurs between the mouse and the desktop or mouse pad. Friction is required to move the mouse and have it respond appropriately. If you were to use a different kind of material for a mouse pad, such as a piece of sand paper, the mouse is harder to move. The piece of sand paper has more friction than the mouse pad.


Figure 5.3: Cone of friction

If we lived in a world with no friction, things may be a bit more chaotic. Automobiles, airplanes and other vehicles would have a tough time trying to slow down or stop because they would be trying to brake on a frictionless surface. This would be like trying to stop on an ice skating rink. There would be nothing to grip to the surface.

### 5.2 Condition of Equilibrium of a Particle on a Rough Inclined Plane

Consider a rough inclined plane making an angle $\alpha$ with the horizontal. Let a block of mass $m$ is resting on it. Various forces acting on the mass are shown in the Fig. 5.4. If the angle of inclination is slowly increased, a stage will come when the block will tend to slide down. This angle of the plane with horizontal plane is known as angle of repose. For satisfying the conditions of limiting equilibrium and resolving the forces along and perpendicular to the plane. The forces along the plane are

$$
\begin{equation*}
\mu R-W \sin \alpha=0 \tag{5.2.1}
\end{equation*}
$$



Figure 5.4: Angle of friction

And the forces perpendicular to the plane are

$$
R-W \cos \alpha=0
$$

or

$$
\begin{equation*}
R=W \cos \alpha \tag{5.2.2}
\end{equation*}
$$

Using (5.2.2), (5.2.1) can be written as

$$
\mu W \cos \alpha=W \sin \alpha
$$

or

$$
\begin{align*}
\mu & =\frac{\sin \alpha}{\cos \alpha} \\
& =\tan \alpha \tag{5.2.3}
\end{align*}
$$

Using (5.1.2), (5.2.3) can be written as

$$
\begin{align*}
\tan \phi & =\tan \alpha \\
\phi & =\alpha \tag{5.2.4}
\end{align*}
$$

(5.2.4) gives the condition for limiting equilibrium of a body on a rough inclined plane.

### 5.3 Least force required to drag a body on a rough plane

In this section we will find the least force required to drag a body on a rough horizontal plane and inclined plane. First consider horizontal plane.

### 5.3.1 Least Force Required to Drag a Body on a Rough Horizontal Plane

Consider a block of mass $m$ is placed on a horizontal rough surface as shown in Fig. 5.5. A tractive force $F$ is applied at an angle $\theta$ with the horizontal such that the block just tends to move. This force will have its components $F_{x}=F \cos \theta$ along and $F_{y}=F \sin \theta$ perpendicular to the plane. Hence, at the limiting equilibrium, the forces acting on the


Figure 5.5: Friction
mass are:

1. The weight $W$ acts downward and is balanced by a sum of vertical component of tractive force and an upward normal reaction $R$ offered by the surface.

$$
\begin{equation*}
R+F \sin \theta=W \tag{5.3.1}
\end{equation*}
$$

2. The horizontal component of tractive force is balanced by the force of friction $F_{r}$.

$$
\begin{align*}
F \cos \theta & =F_{r} \\
& =\mu R \tag{5.3.2}
\end{align*}
$$

Using (5.3.1), (5.3.2) can be written as

$$
\begin{equation*}
F \cos \theta=\mu(W-F \sin \theta) \tag{5.3.3}
\end{equation*}
$$

Using (5.1.2), (5.3.3) can be written as

$$
\begin{aligned}
F \cos \theta & =\tan \phi(W-F \sin \theta) \\
& =\frac{\sin \phi}{\cos \phi}(W-F \sin \theta)
\end{aligned}
$$

or

$$
F(\cos \theta \cos \phi+\sin \theta \sin \phi)=W \sin \phi
$$

Hence the tractive force $F$ can be written as

$$
\begin{equation*}
F=\frac{W \sin \phi}{\cos (\theta-\phi)} \tag{5.3.4}
\end{equation*}
$$

The tractive force $F$ will be least, if the denominator $\cos (\theta-\phi)$ must be maximum and it will be so if

$$
\cos (\theta-\phi)=1
$$

then

$$
(\theta-\phi)=0
$$

or

$$
\begin{equation*}
\theta=\phi \tag{5.3.5}
\end{equation*}
$$

Hence, the force $F$ will be the least if angle of its inclination with the horizontal $\theta$ is equal to the angle of friction $\phi$. In this case the magnitude of the least tractive force is

$$
\begin{equation*}
F=W \sin \phi \tag{5.3.6}
\end{equation*}
$$

### 5.3.2 Least Force Required to Drag a Body on a Rough Inclined Plane

Here we consider two cases
a) The body drags up the inclined plane.
b) The body drags down the inclined plane.

## a) The body drags up the inclined plane.

Consider a block of mass $m$ is placed on an inclined rough surface as shown in Fig. 5.6. A tractive force $F$ is applied at an angle $\theta$ with the plane such that the block just tends to move up. This force will have its components $F \cos \theta$ along and $F \sin \theta$ perpendicular to the plane. Also the weight $W$ has components $W \sin \alpha$ along and $W \cos \alpha$ perpendicular to the plane. Hence, at the limiting equilibrium, the forces acting on the mass and perpendicular to the plane are:

1. The weight component $W \cos \alpha$ is balanced by a sum of component of force $F \sin \theta$ and a normal reaction $R$ offered by the surface.

$$
R+F \sin \theta=W \cos \alpha
$$

or

$$
\begin{equation*}
R=W \cos \alpha-F \sin \theta \tag{5.3.7}
\end{equation*}
$$



Figure 5.6: Friction
2. The component of force $F \cos \theta$ is balanced by a sum of the force of friction $F_{r}$ and weight component $W \sin \alpha$.

$$
\begin{align*}
F \cos \theta & =F_{r}+W \sin \alpha \\
& =\mu R+W \sin \alpha \tag{5.3.8}
\end{align*}
$$

Using (5.3.7), (5.3.8) can be written as

$$
\begin{equation*}
F \cos \theta=\mu(W \cos \alpha-F \sin \theta)+W \sin \alpha \tag{5.3.9}
\end{equation*}
$$

Using (5.1.2), (5.3.9) can be written as

$$
\begin{aligned}
F \cos \theta & =\tan \phi(W \cos \alpha-F \sin \theta)+W \sin \alpha \\
& =\frac{\sin \phi}{\cos \phi}(W \cos \alpha-F \sin \theta)+W \sin \alpha
\end{aligned}
$$

or

$$
F(\cos \theta \cos \phi+\sin \theta \sin \phi)=W(\cos \alpha \sin \phi+\sin \alpha \cos \phi)
$$

Hence the tractive force $F$ can be written as

$$
\begin{equation*}
F=\frac{W \sin (\theta+\phi)}{\cos (\theta-\phi)} \tag{5.3.10}
\end{equation*}
$$

The tractive force $F$ will be least, if the denominator $\cos (\theta-\phi)$ must be maximum and it will be so if

$$
\cos (\theta-\phi)=1
$$

then

$$
(\theta-\phi)=0
$$

or

$$
\theta=\phi
$$

Hence, the force $F$ will be the least if angle of its inclination with the horizontal $\theta$ is equal to the angle of friction $\phi$. In this case the magnitude of the least tractive force is

$$
\begin{equation*}
F=W \sin (\theta+\phi) \tag{5.3.11}
\end{equation*}
$$

## b) The body drags down the inclined plane.

Consider a block of mass $m$ is placed on an inclined rough surface as shown in Fig. 5.7. A tractive force $F$ is applied at an angle $\theta$ with the plane such that the block just tends to move down. This force will have its components $F \cos \theta$ along and $F \sin \theta$ perpendicular to the plane. Also the weight $W$ has components $W \sin \alpha$ along and $W \cos \alpha$ perpendicular to the plane. Hence, at the limiting equilibrium, the forces acting on the mass and perpendicular


Figure 5.7: Friction
to the plane are:

1. The weight component $W \cos \alpha$ is balanced by a sum of component of force $F \sin \theta$ and a normal reaction $R$ offered by the surface.

$$
\begin{equation*}
R+F \sin \theta=W \cos \alpha \tag{5.3.12}
\end{equation*}
$$

2. The component of force $F \cos \theta$ is balanced by a sum of the force of friction $F_{r}$ and weight component $W \sin \alpha$.

$$
\begin{align*}
F \cos \theta+W \sin \alpha & =F_{r} \\
& =\mu R+W \sin \alpha \tag{5.3.13}
\end{align*}
$$

Using (5.3.12), (5.3.13) can be written as

$$
\begin{equation*}
F \cos \theta=\mu(W \cos \alpha-F \sin \theta)-W \sin \alpha \tag{5.3.14}
\end{equation*}
$$

Using (5.1.2), (5.3.14) can be written as

$$
\begin{aligned}
F \cos \theta & =\tan \phi(W \cos \alpha-F \sin \theta)-W \sin \alpha \\
& =\frac{\sin \phi}{\cos \phi}(W \cos \alpha-F \sin \theta)-W \sin \alpha
\end{aligned}
$$

or

$$
F(\cos \theta \cos \phi+\sin \theta \sin \phi)=W(\cos \alpha \sin \phi+\sin \alpha \cos \phi)
$$

Hence the tractive force $F$ can be written as

$$
\begin{align*}
F & =\frac{W \sin (\theta-\phi)}{\cos (\theta-\phi)}  \tag{5.3.15}\\
& =W \tan (\theta-\phi)
\end{align*}
$$

This means that the force $F$ can be applied for $\phi<\theta$, and for $\theta<\phi$ body will move without applying force $F$.
Hence for $\phi<\theta$, the tractive force $F$ will be least, if in (5.3.15), the denominator $\cos (\theta-\phi)$ must be maximum and it will be so if

$$
\cos (\theta-\phi)=1
$$

then

$$
(\theta-\phi)=0
$$

or

$$
\theta=\phi
$$

Hence, the force $F$ will be the least if angle of its inclination with the horizontal $\theta$ is equal to the angle of friction $\phi$. In this case the magnitude of the least tractive force is

$$
\begin{equation*}
F=W \sin (\theta-\phi) \tag{5.3.16}
\end{equation*}
$$

Example 5.3.1. Consider a block of weight $40 N$ rests on a rough horizontal plane and can just be moved by a force of $10 N$ acting horizontally. Find the coefficient and the angle of friction.


Figure 5.8: Friction

Solution Various forces acting on the block are shown in Fig. 5.8.
At limiting equilibrium, the forces acting perpendicular to the plane are the weight $W$ balanced by the normal reaction $R$ offered by the surface.

$$
\begin{align*}
R & =W \\
& =40 N \tag{5.3.17}
\end{align*}
$$

The forces acting along the plane are the pull force $F$ balanced by the force of friction $F_{r}$.

$$
\begin{align*}
F & =F_{r} \\
10 N & =\mu R \tag{5.3.18}
\end{align*}
$$

Using (5.3.17) in (5.3.18), the coefficient of friction is

$$
\begin{equation*}
\mu=\frac{10}{40}=0.25 \tag{5.3.19}
\end{equation*}
$$

Using (5.1.3), the angle of friction is

$$
\begin{align*}
\phi & =\tan ^{-1} \mu=\tan ^{-1}(0.25) \\
& =14.03^{\circ} \tag{5.3.20}
\end{align*}
$$

(5.3.20) gives the angle of friction.

Example 5.3.2. Consider a block of mass 3 kg rests on a floor (rough horizontal plane) and can just be moved by a force of 12 N acting at an upward angle $\theta$ with the horizontal. The coefficient of static friction between the block and floor is 0.4 . Find the least force required to drag a body on the floor. Also find its inclination with the horizontal.

Solution The given data is

$$
\begin{aligned}
m & =3 k g \\
F & =12 N \\
\mu & =0.4
\end{aligned}
$$

The weight of the body is $W=29.4 N$
Various forces acting on the block are shown in Fig. 10.3.
Using (5.1.3), the angle of friction is


Figure 5.9: Friction

$$
\begin{align*}
\phi & =\tan ^{-1} \mu=\tan ^{-1}(0.4) \\
& =21.8^{\circ}=22^{\circ} \tag{5.3.21}
\end{align*}
$$

A the limiting equilibrium, considering (5.3.5), the angle of least force is

$$
\theta=\phi=22^{\circ}
$$

Finally, using (5.3.6), the magnitude of the least tractive force is

$$
\begin{aligned}
F & =W \sin \phi \\
& =29.4 \sin (22) \\
& =1.611 N
\end{aligned}
$$

## Exercises

1. A 10 kg piece of wood is placed on top of another piece of wood. There is 30 N of maximum static friction measured between them. Determine the coefficient of static friction and the angle of friction between the two pieces of wood.
2. A rod, $4 f t$. long, rests on a rough floor against the smooth edge of a table of height 3 ft . If the rod is on the point of slipping when inclined at an angle of $60^{\circ}$ to the horizontal. Find the coefficient and the angle of friction.
3. A uniform ladder of length 30 feet, rests against a vertical wall, making an angle of $45^{\circ}$ with the horizontal. The coefficient of friction between the ladder and the wall is 0.4 and the coefficient of friction between the ladder and the ground is 0.5 . If a man, whose weight is equal to that of the ladder, ascends the ladder, where will he be when the ladder slips?

## Chapter 6

## Linear Momentum, Impulse and Collision

There are phenomena in which interaction between bodies is so fast that it is difficult to measure the forces that are produced between them or the time that the interaction lasts. For example, how long does the collision between two billiard balls last for? What force does one ball apply on the other? These questions are, no doubt, difficult to answer. In these cases, the notion of linear momentum and impulse, in addition to the conditions under which linear momentum is conserved, will allow us to make predictions of the speed and direction of the movement after the interaction. First consider some information about types of system.
Isolated system: No matter or energy is allowed to enter or leave in this system.
Closed system: A system in which no matter is allowed to enter or leave but energy can enter or leave is called closed system.
Open system: In this system energy and matter can enter or leave.

### 6.1 Linear Momentum

The momentum measure provides a sense of how difficult or easy it will be to change the motion of a particle. Assume a locomotive has a large mass $m$ and a very small velocity. Despite the slow motion, it makes intuitive sense that it would be very difficult to stop the motion of this large object. The linear momentum $\vec{p}$ of the locomotive is large due to the large mass. Similarly, consider a bullet with a small mass moving with a very high velocity. Again, it makes intuitive sense that it would be difficult to deflect the motion of the bullet once it has been fired. In this case the linear momentum of the bullet is large not because of its mass, but because of its very large inertial velocity. We can say momentum as the quality of motion.
For a particle of mass $m$ moving with velocity $\vec{v}$, then the linear momentum or simply
momentum is:

$$
\vec{p}=m \vec{v}
$$

It is a vector quantity. Its unit in SI is $\mathrm{kg} . \mathrm{m} / \mathrm{s}$ or $\mathrm{N} . \mathrm{s}$.

### 6.1.1 Linear Momentum and Newtons Second Law of Motion

Newton expressed his second law of motion in terms of momentum as:
The time rate of change of the momentum of a particle is equal to the net force acting on the particle and is in the direction of the force. Mathematically

$$
\vec{F}(t)=\frac{d}{d t} \vec{p}(t)
$$

If the mass is not time-dependent, we have

$$
\vec{F}(t)=m \frac{d}{d t} \vec{v}(t)=m \frac{d^{2}}{d t^{2}} \vec{r}(t)
$$

The velocity is the time derivative of position vector

$$
\vec{v}=\overrightarrow{\dot{r}}=\frac{d}{d t} \vec{r}
$$

and acceleration is the two times derivative of position vector

$$
\vec{a}=\ddot{r}=\frac{d^{2}}{d t^{2}} \vec{r}
$$

Then Newton's second law of motion is

$$
\begin{aligned}
\vec{F} & =\overrightarrow{\dot{p}}=m \overrightarrow{\dot{v}}=m \overrightarrow{\ddot{r}} \\
& =m \vec{a}
\end{aligned}
$$

Thus Newton's second law of motion can also be stated as the force acting on a particle is directly proportional to the acceleration produced, considering $m$ as a constant.
If a particle of constant mass $m$ has a velocity changed from $\vec{v}_{1}$ to $\vec{v}_{2}$ in a time $t$ by a force $\vec{F}$ acting then the acceleration $\vec{a}$ is

$$
\vec{a}=\frac{\vec{v}_{2}-\vec{v}_{1}}{t}
$$

Then the force is

$$
\begin{align*}
\vec{F} & =m \frac{\vec{v}_{2}-\vec{v}_{1}}{t} \\
& =\frac{m \vec{v}_{2}-m \vec{v}_{1}}{t} \tag{6.1.1}
\end{align*}
$$

Example 6.1.1. A car of mass 1000 kg has changed its speed from $15 \mathrm{~m} / \mathrm{s}$ to $12 \mathrm{~m} / \mathrm{s}$ in 2 s . How large was the retarding force?

## Solution:

The given data is

$$
\begin{aligned}
m & =1000 \mathrm{~kg} \\
v_{1} & =15 \mathrm{~m} / \mathrm{s} \\
v_{2} & =12 \mathrm{~m} / \mathrm{s} \\
t & =2 \mathrm{~s}
\end{aligned}
$$

A force is retarding force if its magnitude has negative sign. Using (6.1.1), the force acting on the car is

$$
\begin{aligned}
\vec{F} & =m \frac{\vec{v}_{2}-\vec{v}_{1}}{t} \\
& =1000 \frac{12-15}{2} \\
& =-1500 \mathrm{~N}
\end{aligned}
$$

The negative sign indicates that the acting force is retarding force.

Corollary 6.1.1. If no force is acting on the particle, then the linear momentum is constant.
Proof: According to Newton's second law of motion, the force acting on a particle is

$$
\vec{F}=\overrightarrow{\dot{p}}
$$

If $\vec{F}=0$, then

$$
\overrightarrow{\dot{p}}=\vec{O}
$$

or

$$
\vec{p}=\vec{C}(\text { constant })
$$

Hence the linear momentum is constant.

### 6.1.2 Law of Conservation of Linear Momentum

Consider an isolated system of two particles with masses $m_{1}$ and $m_{2}$. At an instant of time the particles are moving with velocities $\vec{v}_{1}$ and $\vec{v}_{2}$. Since the system is isolated, then by Newton's third law of motion, the action and reaction are the only forces coming into
action, having same magnitude but opposite direction. If $\vec{F}_{12}$ be the force exerted by $m_{1}$ on $m_{2}$, then If $\vec{F}_{21}$ be the force exerted by $m_{2}$ on $m_{1}$, and we have

$$
\vec{F}_{12}=-\vec{F}_{12}
$$

or

$$
\vec{F}_{12}+\vec{F}_{12}=\overrightarrow{0}
$$

Over some time interval, the two masses will accelerate. Then, following Newton's second law of motion $\vec{F}=m \vec{a}$, we can write

$$
m_{1} \vec{a}_{1}+m_{2} \vec{a}_{2}=\overrightarrow{0}
$$

Since acceleration is the time derivative of velocity, so above relation can be written as

$$
m_{1} \frac{d}{d t} \vec{v}_{1}+m_{2} \frac{d}{d t} \vec{v}_{2}=\overrightarrow{0}
$$

If the masses $m_{1}$ and $m_{2}$ are constants, they can be brought into the derivatives, that is

$$
\begin{aligned}
\frac{d}{d t}\left(m_{1} \vec{v}_{1}\right)+\frac{d}{d t}\left(m_{2} \vec{v}_{2}\right) & =\overrightarrow{0} \\
\frac{d}{d t}\left(m_{1} \vec{v}_{1}+m_{2} \vec{v}_{2}\right) & =\overrightarrow{0}
\end{aligned}
$$

or

$$
\begin{equation*}
\left(m_{1} \vec{v}_{1}+m_{2} \vec{v}_{2}\right)=\vec{C}(\text { constant }) \tag{6.1.2}
\end{equation*}
$$

Hence the linear momentum is conserved.

### 6.2 Impulse of a Force

The impulse $I$ of a constant force $F$ acting for a time $t$ is defined as the product of the force and time. (i.e)

$$
\begin{equation*}
\vec{I}=\vec{F} \cdot t \tag{6.2.1}
\end{equation*}
$$

The impulsive of a force acting on a particle in any interval of time $\left(t_{1}, t_{2}\right)$ is defined to be the momentum changed produced.

$$
\vec{I}=\vec{p}_{f}-\vec{p}_{i}=\Delta \vec{p}
$$

From Newton's second law of motion, we have

$$
\vec{F}=\frac{d \vec{p}}{d t}
$$



Figure 6.1: Impulse of a force
or

$$
\begin{equation*}
d \vec{p}=\vec{F} d t \tag{6.2.2}
\end{equation*}
$$

Integrating Eq. (6.2.2) from a time $t_{1}$ to $t_{2}$, we have

$$
\begin{align*}
\int_{t_{1}}^{t_{2}} d \vec{p} & =\int_{t_{1}}^{t_{2}} \vec{F} d t \\
\vec{p}_{2}-\vec{p}_{1} & =\int_{t_{1}}^{t_{2}} \vec{F} d t \\
\Delta \vec{p} & =\int_{t_{1}}^{t_{2}} \vec{F} d t \\
\vec{I} & =\int_{t_{1}}^{t_{2}} \vec{F} d t \tag{6.2.3}
\end{align*}
$$

Thus the impulse of the force $\vec{F}$ is the time integral of the force.
Another way to show this is as follow:
If a particle of constant mass $m$ has a velocity changed from $\vec{v}_{1}$ to $\vec{v}_{2}$ in a time $t$ by a force $\vec{F}$ acting then the impulse $\vec{I}$ is

$$
\begin{aligned}
\vec{I} & =\Delta \vec{p}=\vec{p}_{2}-\vec{p}_{1} \\
& =m \vec{v}_{2}-m \vec{v}_{1}
\end{aligned}
$$

If $m$ is constant and $\vec{v}_{2}-\vec{v}_{1}$ can be written as the combination of differentiation and integration.

$$
\begin{aligned}
& =m \int_{t_{1}}^{t_{2}} \frac{d \vec{v}}{d t} d t=\int_{t_{1}}^{t_{2}} m \vec{a} d t \\
& =\int_{t_{1}}^{t_{2}} \vec{F} d t
\end{aligned}
$$



Figure 6.2: Impulse of a force

Thus the impulse of the force $\vec{F}$ is the time integral of the force. Also we can say that it is the area between the curve and $t$ axis.

### 6.2.1 Linear Momentum and Kinetic Energy

The kinetic energy of a particle of mass $m$ moving with speed $v$ is

$$
\begin{align*}
K & =\frac{1}{2} m v^{2} \\
& =\frac{m^{2} v^{2}}{2 m} \\
& =\frac{p^{2}}{2 m} \tag{6.2.4}
\end{align*}
$$

(6.2.4) is the relation between kinetic energy, momentum and mass.

Example 6.2.1. The magnitude of an impulse I changes the speed of a particle of mass $m$ from $v_{1}$ to $v_{2}$ in a time $t$ by a force $F$. Show that the kinetic energy gained is $\frac{1}{2} I\left(v_{2}+v_{1}\right)$

Solution: Since

$$
I=m v_{2}-m v_{1}
$$

The kinetic energy gained is

$$
\begin{aligned}
K & =\frac{1}{2} m\left(v_{2}^{2}-v_{1}^{2}\right) \\
& =\frac{1}{2} m\left(v_{2}-v_{1}\right)\left(v_{2}+v_{1}\right) \\
& =\frac{1}{2} I\left(v_{2}+v_{1}\right)
\end{aligned}
$$

### 6.3 Collision and Impact

An important area of application of the conservation laws is the study of the collisions of various physical bodies. In many cases, it is hard to assess how exactly the colliding bodies interact with each other. However, in a closed system, the conservation laws often allow one to obtain the information about many important properties of the collision without going into the complicated details of the collision dynamics. The collision is of two types.

### 6.3.1 Elastic Collision

A collision between particles in which the total kinetic energy of the particles remains unchanged is called elastic collision.

### 6.3.2 Inelastic Collision

A collision where the total kinetic energy of the particles is not conserved is called inelastic collision. One or more of the particles may also be deformed after the collision.

### 6.4 Impulsive Forces

An impulsive force is a very great force acting for a very short time on a body, so that the change in the position of the body during the time the force acts on it may be neglected. Consider the relation (6.2.3)

$$
\vec{I}=\Delta \vec{p}=\int_{t_{1}}^{t_{2}} \vec{F} d t
$$

it follows that the net external force is responsible for change in momentum. When a collision (or crash) occur, the external force on the body has large magnitude, and suddenly changes the momentum of the body.
In many situation we do not know how the force varies with time but we do know the average magnitude $\vec{F}_{\text {avg }}$ of the force and the duration $\Delta t\left(=t_{2}-t_{1}\right)$ of the collision. Thus we can write the magnitude of the impulse as

$$
\begin{equation*}
\vec{I}=\vec{F}_{a v g} \Delta t \tag{6.4.1}
\end{equation*}
$$

When the force $\vec{F}$ grows very large $(F \rightarrow \infty)$ during very small interval of time $\left(t_{2}-t_{1}=\right.$ $\Delta t \rightarrow 0$ ), then

$$
\vec{I}=\lim _{F \rightarrow \infty} \int_{t_{1}}^{t_{2}} \vec{F} d t=l(\text { finite })
$$

Then such forces are called impulsive forces. Their measurement as force in impracticable (not measurable) but one can measure the momentum change they produce.

Examples: The blow of a hammer, a bat hits a cricket ball, the collision of two billiard balls etc.

Example 6.4.1. When a male bighorn sheep runs head-first into another male, the rate at which its speed drops to zero is dramatic. Figure (6.4) gives a typical graph of the


Figure 6.3: The acceleration versus time of a bighorn sheep during a collision with another male
acceleration a versus time $t$ for such a collision, with the acceleration taken as negative to correspond to an initially positive velocity. The peak acceleration has magnitude $34 \mathrm{~m} / \mathrm{s}^{2}$ and the duration of the collision is 0.27 s. Assuming that the sheep's mass is 90 kg . What are the magnitudes of the impulse and average force due to the collision?

Solution: Since the impulse (magnitude) of the force $F$ (magnitude) is the area between the curve and $t$ axis. We can reform the given Figure (6.4) as:


Figure 6.4: The force versus time of a bighorn sheep during a collision with another male

$$
\begin{aligned}
I & =\text { area }=\frac{1}{2} F \cdot t=\frac{1}{2} m a \cdot t \\
& =\frac{1}{2}(90)(34)(0.27) \cdot t \\
& =413 \mathrm{~N} . \mathrm{s}
\end{aligned}
$$

For the magnitude of average force, from Eq. (6.4.2), we can write

$$
\begin{aligned}
F_{\text {avg }} & =\frac{I}{\Delta t}=\frac{413}{0.27} \\
& =1500 \mathrm{~N}
\end{aligned}
$$

### 6.4.1 Elastic Collision in One Dimension

Consider two smooth, non-rotating balls of masses $m_{1}$ and $m_{2}$. Let both are moving in the same directions with initial velocities (before impact) $u_{1}$ and $u_{2}$ respectively. After some time they collide and after collision they move in the same direction. Let $m_{1}$ moves with velocity $v_{1}$ and $m_{2}$ with velocity $v_{2}$. By law of conservation of linear momentum, we have

$$
\begin{align*}
\text { momentum before collision } & =\text { momentum after collision } \\
m_{1} u_{1}+m_{2} u_{2} & =m_{1} v_{1}+m_{2} v_{2} \\
m_{1}\left(u_{1}-v_{1}\right) & =m_{2}\left(v_{2}-u_{2}\right) \tag{6.4.2}
\end{align*}
$$

As the collision is elastic, the kinetic energy of the system is conserved. Hence by law of conservation of kinetic energy, we have

$$
\begin{align*}
\text { kinetic energy before collision } & =\text { kinetic energy after collision } \\
\frac{1}{2} m_{1} u_{1}^{2}+\frac{1}{2} m_{2} u_{2}^{2} & =\frac{1}{2} m_{1} v_{1}^{2}+\frac{1}{2} m_{2} v_{2}^{2} \\
m_{1}\left(u_{1}^{2}-v_{1}^{2}\right) & =m_{2}\left(v_{2}^{2}-u_{2}^{2}\right) \tag{6.4.3}
\end{align*}
$$

Dividing (6.4.3) by (6.4.2), we have

$$
\begin{equation*}
u_{1}+v_{1}=v_{2}+u_{2} \tag{6.4.4}
\end{equation*}
$$

or

$$
\begin{equation*}
u_{1}-u_{2}=v_{2}-v_{1}=-\left(v_{1}-v_{2}\right) \tag{6.4.5}
\end{equation*}
$$

We note that before collision $\left(u_{1}-u_{2}\right)$ is the velocity of the first ball relative to the second ball and $\left(v_{1}-v_{2}\right)$ is the velocity of the first ball relative to the second ball after collision. (6.4.5) shows that these relative velocities have same magnitude but the order is reversed after the collision.

If all the data before collision $\left(m_{1}, m_{2}, u_{1}\right.$ and $\left.u_{2}\right)$ is known, the velocities after collision ( $v_{1}$ and $v_{2}$ ) can be calculated using (6.4.2) and (6.4.4).

$$
\begin{align*}
v_{1} & =\frac{m_{1}-m_{2}}{m_{1}+m_{2}} u_{1}+\frac{2 m_{2}}{m_{1}+m_{2}} u_{2}  \tag{6.4.6}\\
v_{2} & =\frac{2 m_{1}}{m_{1}+m_{2}} u_{1}+\frac{m_{2}-m_{1}}{m_{1}+m_{2}} u_{2} \tag{6.4.7}
\end{align*}
$$

The velocities after collision also depend on the masses of both balls. Some cases arise depending on the nature of masses as follows.
case 1 If $m_{1}=m_{2}$ then (6.4.6) and (6.4.7) gives the velocities after collision as

$$
\begin{aligned}
& v_{1}=u_{2} \\
& v_{2}=u_{1}
\end{aligned}
$$

case 2 If $m_{1}=m_{2}$ and $u_{2}=0$ then (6.4.6) and (6.4.7) gives the velocities after collision as

$$
\begin{aligned}
& v_{1}=0 \\
& v_{2}=u_{1}
\end{aligned}
$$

case 3 If $m_{1} \neq m_{2}$ and $u_{2}=0$ then (6.4.6) and (6.4.7) gives the velocities after collision as

$$
\begin{aligned}
v_{1} & =\frac{m_{1}-m_{2}}{m_{1}+m_{2}} u_{1} \\
v_{2} & =\frac{2 m_{1}}{m_{1}+m_{2}} u_{1}
\end{aligned}
$$

case 4 If $m_{1}$ is very very small as compared to $m_{2}$ i.e $m_{1} \ll m_{2}$ and $u_{2}=0$ then (6.4.6) and (6.4.7) gives the velocities after collision as

$$
\begin{aligned}
& v_{1}=u_{1} \\
& v_{2}=0
\end{aligned}
$$

case 5 If $m_{1}$ is very very large as compared to $m_{2}$ i.e $m_{1} \gg m_{2}$ and $u_{2}=0$ then (6.4.6) and (6.4.7) gives the velocities after collision as

$$
\begin{aligned}
& v_{1}=u_{1} \\
& v_{2}=2 u_{1}
\end{aligned}
$$

Example 6.4.2. Consider a ball of mass 20 g is moving to the right with a velocity of $9 \mathrm{~m} / \mathrm{sec}$ and it collides with ball of mass 1 kg which is at rest. Assume the collision was perfectly elastic. Find the velocity of each ball after collision.

Solution The given data is

$$
\begin{aligned}
m_{1} & =20 \mathrm{~g}=0.02 \mathrm{~kg} \\
m_{2} & =1 \mathrm{~kg} \\
u_{1} & =9 \mathrm{~m} / \mathrm{sec} \\
u_{2} & =0
\end{aligned}
$$

The problem is similar to case 3 , then the velocity of first ball after collision is

$$
\begin{aligned}
v_{1} & =\frac{m_{1}-m_{2}}{m_{1}+m_{2}} u_{1} \\
& =\frac{0.02-1}{1+0.02} 9 \\
& =-8.65 \mathrm{~m} / \mathrm{sec}
\end{aligned}
$$

The first ball after collision moves to the left with a velocity of $8.65 \mathrm{~m} / \mathrm{sec}$. Next the velocity of second ball after collision is

$$
\begin{aligned}
v_{2} & =\frac{2 m_{1}}{m_{1}+m_{2}} u_{1} \\
& =\frac{2(0.02)}{1+0.02} 9 \\
& =0.35 \mathrm{~m} / \mathrm{sec}
\end{aligned}
$$

The second ball after collision moves to the right with a velocity of $0.35 \mathrm{~m} / \mathrm{sec}$.

### 6.5 Impact of Elastic Bodies

A collision between two bodies is said to be impact, if the bodies are in contact for a short interval of time and exert very large force on each other during this short period. On impact, the bodies deform first and then recover due to elastic properties and start moving with different velocities. The velocity with which they they separate depends not only on their velocity of approach but also on the shape, size, elastic property and line of impact. Here the velocity of the bodies during the short period of impact in not considered. Only the velocities of the colliding bodies before impact and after impact are considered. First some some technical terms.

### 6.5.1 Definitions

- Line of Impact: Common normal to the colliding surfaces is known as line of impact.
- Direct Impact: If the motion of the two colliding bodies is directed along the line of impact
- Oblique Impact: If the motion of one or both of the colliding bodies is not directed along the line of impact.
- Central Impact: If the mass centres of colliding bodies are on the line of impact.
- Eccentric Impact: Even if mass centre of one of the colliding bodies is not on the line of impact.


Figure 6.5: Direct Central Impact


Figure 6.6: Oblique Central Impact


Figure 6.7: Direct Eccentric Impact

During the collision, the colliding bodies initially undergo a deformation for a small time interval and then recover the deformation in a further small time interval. So, the period of collision (or time of impact) consists of two time intervals.

## 1. Period of Deformation

## 2. Period of Restitution

- Period of Deformation is the time elapse between the instant of the initial contact and the instant of maximum deformation of the bodies.
- Period of Restitution is the time elapse between the instant of the maximum deformation condition and the instant of separation of the bodies. Thus,impulse during deformation $=F_{D} d t$
where $F_{D}$ is the force that acts during the period of deformation. The magnitude of $F_{D}$ varies from zero at the instant initial contact to the maximum value at the instant of maximum deformation.
Similarly, impulse during deformation $=F_{R} d t$ where $F_{R}$ is the force that acts during the period of deformation. The magnitude of $F_{R}$ varies from A maximum at the instant of maximum deformation condition to zero at the instant of just separation of the bodies.


Figure 6.8: Oblique Eccentric Impact

### 6.6 Coefficient of Restitution.

Let
$m_{1}$ - mass of the first body
$m_{2}$ - mass of the second body
$u_{1}$ - velocity of the first body before impact
$u_{2}$ - velocity of the second body before impact
$v_{1}$ - velocity of the first body after impact
$v_{2}$ - velocity of the second body after impact
At the instant of maximum deformation, the colliding bodies will have same velocity. Let the velocity of the bodies at the instant of maximum deformation be $u_{D} \max$.
Applying Impulse-Momentum principle for the first body

$$
\begin{align*}
F_{D} d t & =m_{1}\left(u_{D \max }-u_{1}\right)  \tag{6.6.1}\\
F_{R} d t & =m_{1}\left(v_{1}-u_{D \max }\right) \tag{6.6.2}
\end{align*}
$$

Dividing (6.6.2) BY (6.6.2)

$$
\begin{equation*}
\frac{F_{R} d t}{F_{D} d t}=\frac{v_{1}-u_{D \max }}{u_{D \max }-u_{1}} \tag{6.6.3}
\end{equation*}
$$

Similarly the analysis for the second body gives,

$$
\begin{equation*}
\frac{F_{R} d t}{F_{D} d t}=\frac{u_{D \max }-v_{2}}{u_{2}-u_{D \max }} \tag{6.6.4}
\end{equation*}
$$

From (6.6.3) and (6.6.4)

$$
\begin{align*}
\frac{F_{R} d t}{F_{D} d t} & =\frac{v_{1}-u_{D \max }}{u_{D} \max -u_{1}}=\frac{u_{D \max }-v_{2}}{u_{2}-u_{D} \max } \\
& =\frac{v_{1}-u_{D} \max +u_{D} \max -v_{2}}{u_{D} \max -u_{1}+u_{2}-u_{D \max }} \\
& =\frac{v_{1}-v_{2}}{u_{2}-u_{1}}=\frac{v_{2}-v_{1}}{u_{1}-u_{2}}  \tag{6.6.5}\\
& =\frac{\text { Relative velocity of separation }}{\text { Relative velocity of approach }}
\end{align*}
$$

Sir Isaac Newton conducted the experiments and observed that when collision of two bodies takes place relative velocity of separation bears a constant ratio to the relative velocity of approach, the relative velocities being measured along the line of impact. This constant ratio is called as the coefficient of restitution and is denoted by the letter $e$ or $C_{R}$. Hence from (6.6.5), we have

$$
\begin{equation*}
e=C_{R}=\frac{F_{R} d t}{F_{D} d t}=\frac{v_{1}-v_{2}}{u_{2}-u_{1}} \tag{6.6.6}
\end{equation*}
$$

For perfectly elastic bodies, the magnitude of relative velocity after impact will be same as that before impact and hence the coefficient of restitution will be 1. Perfectly inelastic bodies cling together and hence the velocity of separation will be zero, and so the coefficient of restitution will also be 0 . Hence the coefficient of restitution always lies between 0 and 1.

The value of coefficient of restitution depends not only on the material property but it also depends on the shape and size of the body. Hence the coefficient of restitution is the property of two colliding bodies but not merely of material of the colliding bodies.

Example 6.6.1. Consider a $20 N$ body is moving to the right with a velocity of $8 \mathrm{~m} / \mathrm{sec}$ and a $10 N$ body moving to the left with a velocity of $12 \mathrm{~m} / \mathrm{sec}$. Direct central impact occurs between them (See Fig. 6.11). Find the velocity of each body after impact if the coefficient of restitution is 0.6.

## Solution

$$
\begin{aligned}
\text { velocity of } 20 \mathrm{~N} \text { body before impact } & =u_{1}=8 \mathrm{~m} / \mathrm{sec} \\
\text { velocity of } 10 \mathrm{~N} \text { body before impact } & =u_{2}=-12 \mathrm{~m} / \mathrm{sec} \\
\text { velocity of } 20 \mathrm{~N} \text { body after impact } & =v_{1} \mathrm{~m} / \mathrm{sec} \\
\text { velocity of } 10 \mathrm{~N} \text { body after impact } & =v_{2} \mathrm{~m} / \mathrm{sec}
\end{aligned}
$$

Applying the principles of conservation of momentum to the colliding bodies, we get

$$
\begin{aligned}
m_{1} u_{1}+m_{2} u_{2} & =m_{1} v_{1}+m_{2} v_{2} \\
\frac{20}{g}(8)+\frac{10}{g}(-12) & =\frac{20}{g} v_{1}+\frac{10}{g} v_{2}
\end{aligned}
$$



Figure 6.9: Direct Central Impact


Figure 6.10: Direct Central Impact
or we have

$$
\begin{equation*}
2 v_{1}+v_{2}=4 \tag{6.6.7}
\end{equation*}
$$

From (6.6.6), we have

$$
\begin{align*}
e\left(u_{1}-u_{2}\right) & =v_{2}-v_{1} \\
0.6(8-(-12)) & =v_{2}-v_{1} \\
v_{2}-v_{1} & =12 \tag{6.6.8}
\end{align*}
$$

From (6.6.11) and (6.6.8), we have

$$
\begin{equation*}
v_{1}=-\frac{8}{3}=-2.67 \tag{6.6.9}
\end{equation*}
$$

From (6.6.8), we can write

$$
\begin{align*}
v_{2} & =12+v_{1} \\
v_{2} & =12-2.67 \\
& =9.33 \mathrm{~m} / \mathrm{sec} \tag{6.6.10}
\end{align*}
$$

After collision the 20 N body is moving to the left with a velocity of $2.67 \mathrm{~m} / \mathrm{sec}$ and a 10 N body moving to the right with a velocity of $9.33 \mathrm{~m} / \mathrm{sec}$.

Example 6.6.2. A body of 20 N is moving to the right at a speed of $7 \mathrm{~m} / \mathrm{sec}$ and strikes a 10 N body that is moving to the left at a speed of $10 \mathrm{~m} / \mathrm{sec}$. The final velocity of 10 N body is $4 \mathrm{~m} / \mathrm{sec}$ to the right. Calculate the coefficient of restitution and final the velocity of the 20 N body.

## Solution



Figure 6.11: Direct Central Impact


Figure 6.12: Direct Central Impact

$$
\begin{aligned}
\text { velocity of } 20 \mathrm{~N} \text { body before impact } & =u_{1}=7 \mathrm{~m} / \mathrm{sec} \\
\text { velocity of } 10 \mathrm{~N} \text { body before impact } & =u_{2}=-10 \mathrm{~m} / \mathrm{sec} \\
\text { velocity of } 20 \mathrm{~N} \text { body after impact } & =v_{1} \mathrm{~m} / \mathrm{sec} \\
\text { velocity of } 10 \mathrm{~N} \text { body after impact } & =4 \mathrm{~m} / \mathrm{sec}
\end{aligned}
$$

Applying the principles of conservation of momentum to the colliding bodies, we get

$$
\begin{aligned}
m_{1} u_{1}+m_{2} u_{2} & =m_{1} v_{1}+m_{2} v_{2} \\
\frac{20}{g}(7)+\frac{10}{g}(-10) & =\frac{20}{g} v_{1}+\frac{10}{g}(4) \\
14-10 & =2 v_{1}+4
\end{aligned}
$$

or we have

$$
\begin{equation*}
v_{1}=0 \tag{6.6.11}
\end{equation*}
$$

After collision, the 20 N body comes to rest.
The coefficient of restitution is given by (6.6.6)

$$
\begin{align*}
e & =\frac{v_{1}-v_{2}}{u_{2}-u_{1}} \\
& =\frac{0-4}{-10-7} \\
& =\frac{4}{17}=0.235 \tag{6.6.12}
\end{align*}
$$

## Exercises

1. Consider a ball of mass 200 g is moving to the right with a velocity of $9 \mathrm{~m} / \mathrm{sec}$ and it collides with ball of mass $80 g$ which is moving to the left with a velocity of $15 \mathrm{~m} / \mathrm{sec}$. Assume the collision was perfectly elastic. Find the velocity of each ball after collision.
2. A glass marble of weight 0.2 N falls from a height of 10 m and rebounds to a height of 8 m . Its time of contact with floor is 0.1 s . Find the impulse and the average force between the marble and the floor.
3. A 1 N ball is bowled to a batsman. The velocity of the ball was $20 \mathrm{~m} / \mathrm{s}$ horizontally just before batsman hit it. After hitting it went away with a velocity of $48 \mathrm{~m} / \mathrm{s}$ at an inclination of $30^{0}$ to the horizontal as shown in the Fig.(). Find the average force exerted on the ball by the bat if the impact lasts for 0.02 seconds.
4. An 80 N body moving to the right at a speed of $3 \mathrm{~m} / \mathrm{sec}$ strikes a 10 N body that is moving to the left at a speed of $10 \mathrm{~m} / \mathrm{sec}$. The final velocity of 10 N body is $4 \mathrm{~m} / \mathrm{sec}$ to the right. Calculate the coefficient of restitution and final the velocity of the 80 N body.

## Chapter 7

## Angular Momentum

### 7.1 Angular Momentum

Consider a particle of mass $m$ is moving under a force $\vec{F}$. At time $t$ the particle is at $A$, having position vector $\vec{r}$. The velocity $\vec{v}$ or linear momentum $\vec{p}$ of the particle is tangent to $\vec{r}$ at $A$. The angular momentum $\vec{L}$ of the particle is

$$
\begin{align*}
\vec{L} & =\vec{r} \times \vec{p}=r p \sin \theta \hat{n}  \tag{7.1.1}\\
& =\vec{r} \times m \vec{v}=m v r \sin \theta \hat{n} \tag{7.1.2}
\end{align*}
$$

Therefore, the angular momentum $\vec{L}$ is always perpendicular to the plane defined by the


Figure 7.1: Angular Momentum.
particle's position vector $\vec{r}$ and velocity $\vec{v}$ as shown in Fig. 7.1. Note the magnitude and the direction of $\vec{L}$ depend on the choice of origin. The $S I$ unit of angular momentum is
$k g-m^{2} / s$. If $\theta$ is the angle between $\vec{r}$ and $\vec{v}$, the magnitude of angular momentum is

$$
\begin{aligned}
L & =|\vec{r} \times \vec{p}| \\
& =r p \sin \theta=m v r \sin \theta \\
& =p d=m v d
\end{aligned}
$$

Where $d=r \sin \theta$ is the perpendicular distance of $\vec{v}$ from $O$.
Note:

- If $\vec{r}$ and $\vec{v}$ are parallel, the angular momentum is zero. In this case $\theta=0$ or $\pi \mathrm{rad}$. In other words, when the linear velocity of the particle is along a line that passes through the origin, the particle has zero angular momentum with respect to the origin.
- If $\vec{r}$ and $\vec{v}$ are perpendicular to each other then the angular momentum is $L=r p$.

At that instant, the particle moves exactly as if it were on the rim of a wheel rotating about the origin in a plane defined by $\vec{r}$ and $\vec{p}$.

Example 7.1.1. A particle of mass 3 kg moves in $x y$ plane with a uniform velocity $\vec{v}=$ $2 \mathrm{~m} / \mathrm{s} \hat{i}+3 \mathrm{~m} / \mathrm{s} \hat{j}$. At time $t$, the particle passes through the point $P(3 m, 2 m)$ as shown in Fig. 7.2. Find the magnitude and the direction of the angular momentum about the origin at time $t$.


Figure 7.2: Angular momentum about origin in a plane

Solution: The given data is

$$
\begin{aligned}
m & =3 k g \\
\vec{v} & =2 m / s \hat{i}+3 m / s \hat{j} \\
P & =P(3 m, 2 m)
\end{aligned}
$$

The position vector of $P$ is

$$
\vec{r}=3 m \hat{i}+2 m \hat{j}
$$

and linear momentum is

$$
\vec{p}=m \vec{v}=6 N . s \hat{i}+9 N . s \hat{j}
$$

Using (7.1.2), the angular momentum about $O$ is

$$
\begin{aligned}
\vec{L} & =\vec{r} \times \vec{p} \\
& =(3 \hat{i}+2 \hat{j}) \times(6 m / s \hat{i}+9 m / s \hat{j}) \\
& =18(\hat{i} \times \hat{i})+27(\hat{i} \times \hat{j})+12(\hat{j} \times \hat{i})+18(\hat{j} \times \hat{j})
\end{aligned}
$$

Using $\hat{i} \times \hat{i}=0=\hat{j} \times \hat{j}, \quad \hat{i} \times \hat{j}=\hat{k}$ and $\hat{j} \times \hat{i}=-\hat{k}$, we have

$$
\begin{aligned}
\vec{L} & =27 \hat{k}-12 \hat{k} \\
& =15 \mathrm{~kg}-\mathrm{m}^{2} / \mathrm{s} \hat{k}
\end{aligned}
$$

The magnitude of the angular momentum about the origin at time $t$ is $15 \mathrm{~kg}-\mathrm{m}^{2} / \mathrm{s}$, and the direction is along $z$ axis.

### 7.1.1 Angular Momentum and Uniform Circular Motion

Consider a particle of mass $m$ moves with linear velocity is $v$ in a circular path of radius $r$, in the $x y$ plane as shown in Figure 7.3. In this motion $\vec{r}$ and $\vec{v}$ are perpendicular to each


Figure 7.3: Angular momentum in uniform circular motion.
other, so $\theta=90^{\circ}$. Then the magnitude of angular momentum is

$$
\begin{equation*}
L=r p=r m v \tag{7.1.3}
\end{equation*}
$$

Next $\vec{r}$ and $\vec{v}$ lies in $x y$ plane. Let $\hat{i}$ be unit vector along $X-a x i s$ and $\hat{j}$ be unit vector along $Y$-axis. Then $\hat{k}$ be a unit vector perpendicular $x y$ plane. Hence angular momentum has direction along $\hat{k}$.

Corollary 7.1.1. A particle in uniform circular motion has a constant angular momentum about an axis through the center of its path.

Proof: Since the particle is moving with uniform circular motion, so the linear momentum like velocity of the particle is always changing (in direction, not magnitude).

$$
\frac{d v}{d t}=0
$$

In this case $r$ is also fixed. Next take time derivative of (7.1.3)

$$
\begin{aligned}
\frac{d L}{d t} & =\frac{d r p}{d t}=\frac{d r m v}{d t} \\
& =0
\end{aligned}
$$

Hence a particle in uniform circular motion has a constant angular momentum about an axis through the center of its path.

### 7.1.2 Angular Momentum of a System of $n$ Particles

Consider a system of $n$ particles. Let the $i t h$ particle with mass $m_{i}$ is moving with linear momentum $\vec{p}_{i}$. At time $t$ it is at point $P_{i}$ having position vector $\vec{r}_{i}$, then its angular momentum is

$$
\vec{L}_{i}=\vec{r}_{i} \times \vec{p}_{i}
$$

Angular momentum of a system of particles is the sum of angular momentums all $n$ particles. i.e

$$
\vec{L}=\vec{L}_{1}+\vec{L}_{2} \ldots \vec{L}_{n}=\sum_{i=1}^{n} \vec{L}_{i}
$$

### 7.1.3 Magnitude of Angular Momentum in Polar Coordinates

The angular momentum $L$ of the particle is

$$
\begin{aligned}
\vec{L} & =\vec{r} \times \vec{p} \\
& =\vec{r} \times m \vec{v}=m(\vec{r} \times \vec{v})
\end{aligned}
$$

The velocity in polar coordinates is

$$
v=\dot{r} \hat{r}+r \dot{\theta} \hat{\theta}
$$

The angular momentum in polar coordinates is

$$
\begin{align*}
\vec{L} & =m(r \hat{r} \times(\dot{r} \hat{r}+r \dot{\theta} \hat{\theta})) \\
& =m\left(r \dot{r}(\hat{r} \times \hat{r})+r^{2} \dot{\theta}(\hat{r} \times \hat{\theta})\right) \\
& =m\left(0+r^{2} \dot{\theta} \hat{k}\right) \\
& =m\left(r^{2} \dot{\theta}\right) \hat{k} \tag{7.1.4}
\end{align*}
$$

The magnitude of angular momentum is

$$
\begin{equation*}
|\vec{L}|=m\left(r^{2} \dot{\theta}\right) \tag{7.1.5}
\end{equation*}
$$

The unit mass magnitude of angular momentum is

$$
\begin{equation*}
\frac{|\vec{L}|}{m}=r^{2} \dot{\theta} \tag{7.1.6}
\end{equation*}
$$

### 7.1.4 Law of Conservation of Angular Momentum

Theorem 7.1.2. The total angular momentum of a system is constant in both magnitude and direction if the resultant external torque acting on the system is zero, that is, if the system is isolated.

Proof: First we show that time rate of change of the angular momentum $\vec{L}$ equals the net torque.

$$
\vec{\tau}=\frac{d \vec{L}}{d t}=\vec{r} \times \vec{F}
$$

From (7.1.2), the angular momentum and then its time derivative are

$$
\begin{aligned}
\vec{L} & =\vec{r} \times \vec{p}=\vec{r} \times m \vec{v} \\
\frac{d \vec{L}}{d t} & =\overrightarrow{\dot{r}} \times m \vec{v}+\vec{r} \times m \overrightarrow{\dot{v}} \\
& =\vec{r} \times m \overrightarrow{\vec{r}}+\vec{r} \times m \vec{r} \\
& =0+\vec{r} \times \vec{F} \\
& =\vec{\tau}
\end{aligned}
$$

Hence time rate of change of the angular momentum $\vec{L}$ equals the net torque.
if the resultant external torque acting on the system is zero

$$
\frac{d \vec{L}}{d t}=0
$$

Hence, the total angular momentum of a system is constant in both magnitude and direction if the resultant external torque acting on the system is zero.

## Exercises

1. A particle of mass 2 kg moves in $x y$ plane with a uniform velocity $\vec{v}=2.4 \mathrm{~m} / \mathrm{s} \hat{i}+$ $3.3 m / s \hat{j}$. At time $t$, the particle passes through the point $P(3 m, 4 m)$. Find the magnitude and the direction of the angular momentum about the origin at time $t$.

## Chapter 8

## Work Energy and Conservative Force

Work and energy are the same thing. Energy cant be created or destroyed, it can only be changed from one type into another type. When a force is applied on an object and it moves a distance we say that work has been done and energy has been transformed (changed from one type to another type).

### 8.1 Work

Consider a regular trihedral system with $O$ as origin. Let a particle of mass $m$ is moving under a force $\vec{F}$ along a curve $C$. Let at time $t$ it be at point $P$, with position vector $\vec{r}$. After a very small time interval $\Delta t$ it moved an infinitesimal displacement $\overrightarrow{d r}$ and is at point $Q$ as shown in Fig. 8.1. Then the work done by a force $\vec{F}$ in taking the particle from point $P$ to point $Q$ along the curve $C$ in an infinitesimal displacement $\overrightarrow{d r}$ is the dot product of $\vec{F}$ and $\overrightarrow{d r}$. Hence

$$
\begin{equation*}
d W=\vec{F} \cdot \overrightarrow{d r} \tag{8.1.1}
\end{equation*}
$$

Also the total work done in moving from $A$ to $B$ is

$$
\begin{equation*}
W=\int_{A}^{B} \vec{F} \cdot \overrightarrow{d r} \tag{8.1.2}
\end{equation*}
$$

If $\theta$ is an angle between $\vec{F}$ and $\overrightarrow{d r}$, then (8.1.1) can be written as

$$
d W=F d r \cos \theta
$$

is the general expression for work done by a force. The expression may be rearranged as

$$
\begin{equation*}
d W=F \cos \theta d r \tag{8.1.3}
\end{equation*}
$$



Figure 8.1: Work done
gives a new definition of work done. The work done by a force is defined as the product of component of force in the direction of motion and the distance moved.

### 8.1.1 Work done by a Constant Force

If $\vec{F}$ is constant and $\overrightarrow{A B}=\vec{r}_{B}-\vec{r}_{A}=\vec{r}$

$$
\begin{aligned}
W & =\vec{F} \cdot \int_{r_{A}}^{r_{B}} \overrightarrow{d r} \\
& =\vec{F} \cdot\left(\vec{r}_{A}-\vec{r}_{B}\right) \\
& =\vec{F} \cdot \vec{r} \\
\text { Net Work } & =\text { Net Force } \cdot \text { displacement }
\end{aligned}
$$

If $\theta$ is an angle between $\vec{F}$ and $\vec{r}$ then the work done is

$$
W=F r \cos \theta
$$

or

$$
W=F \cos \theta r
$$

Its unit in $S I$ is Joule $(J)$ or $N . m$. Note the work is done only if an object moves in the direction of $F$.

Example 8.1.1. A crate is pulled for a distance of 6 m along a floor with a horizontal force of 5 N . Find the work done by the force.

Solution The given data is:

$$
\begin{aligned}
F & =5 \mathrm{~N} \\
d & =6 \mathrm{~m}
\end{aligned}
$$

Here the force and the displacement are in the same direction, so the angle between them is $\theta=0$. Hence the work done is just the product of force and distance. i.e

$$
\begin{aligned}
W & =F d \\
& =5(6)=30 \mathrm{~N} \cdot \mathrm{~m}
\end{aligned}
$$

### 8.2 Energy

Energy is defined as the capacity to do work. It is non-material property capable of causing changes in matter. In dynamics, we deal with mechanical energy which is of two types, namely kinetic and potential energy.

### 8.2.1 Kinetic Energy

Energy of an object due to its motion is called kinetic energy. It is the amount of work done by a force in bringing a moving particle to rest from its existing position. It is denoted by $T$.
Consider a regular trihedral system with $O$ as origin. Let a particle of mass $m$ is moving with velocity $\vec{v}$, under the a force $\vec{F}$ along a curve $C$. Let at time $t$ it be at point $P$, with position vector $\vec{r}$. Then the work done by a force $\vec{F}$ in taking the particle from point $P$ to $Q$ (rest) along the curve $C$ is:

$$
T=W=\int_{P}^{Q} \vec{F} \cdot \overrightarrow{d r}
$$

If the applied force $\vec{F}=m \vec{a}$, then

$$
\begin{equation*}
T=\int_{P}^{Q} m \vec{a} \cdot d \vec{r} \tag{8.2.1}
\end{equation*}
$$

The acceleration is

$$
\begin{equation*}
\vec{a}=\frac{d^{2} \vec{r}}{d t^{2}}=\frac{d \vec{v}}{d t} \tag{8.2.2}
\end{equation*}
$$

and the velocity of the particle is

$$
\vec{v}=\frac{d \vec{r}}{d t}
$$



Figure 8.2: Work done
or

$$
\begin{equation*}
d \vec{r}=\vec{v} d t \tag{8.2.3}
\end{equation*}
$$

Using (8.2.2) and (8.2.3), (8.2.1) becomes

$$
\begin{align*}
T & =\int_{P}^{Q} m \frac{d \vec{v}}{d t} \cdot \vec{v} d t \\
& =\int_{P}^{Q} \frac{1}{2} m \frac{d v^{2}}{d t} d t \\
& =\int_{P}^{Q} \frac{d}{d t}\left(\frac{1}{2} m v^{2}\right) d t \\
& =\frac{1}{2} m v^{2} \tag{8.2.4}
\end{align*}
$$

(8.2.4) is an expression for kinetic energy. In $S I$, it is measured in Joules $(J)$.

### 8.2.2 Kinetic Energy in terms of Work

Kinetic energy is the amount of work done by a force in bringing a moving particle to rest from its existing position. If $m$ is the mass of the particle, then by Newton's second law of motion, the applied force is $\vec{F}=m \vec{a}$. Using (8.2.2) and (8.2.3), (8.1.1) can be written as

$$
d W=m \frac{d v}{d t} \cdot v d t
$$

$$
\begin{align*}
d W & =m v d v \\
& =d\left(\frac{1}{2} m v^{2}\right) \tag{8.2.5}
\end{align*}
$$

Now the total work done from $A$ to $B$ is

$$
\begin{aligned}
W_{A B} & =\int_{A}^{B} F d r \\
& =\int_{A}^{B} d\left(\frac{1}{2} m v^{2}\right) \\
& =\left(\frac{1}{2} m v^{2}\right)_{A}^{B} \\
& =\frac{1}{2} m v_{B}^{2}-\frac{1}{2} m v_{A}^{2}
\end{aligned}
$$

The quantity $T=\frac{1}{2} m v^{2}$ is the kinetic energy. Hence the work done is

$$
\begin{align*}
W_{A B} & =T_{B}-T_{A} \\
& =\Delta T \tag{8.2.6}
\end{align*}
$$

We can postulate some results as under:
(a) If $T_{A}>T_{B}$ then $W_{A B}<0$

The work is done by the particle against the force and its kinetic energy has decreased.
(b) If $T_{A}<T_{B}$ then $W_{A B}>0$

The work is done by the force on the particle and its kinetic energy has increased.
In any case the work done depends upon the difference in kinetic energies of the particle in the two positions. The work done against the dissipative force like the fractional force is always negative.

### 8.2.3 Potential Energy

Potential energy is energy of position. The amount of potential energy possessed by an object is proportional to how far it was displaced from its original position. If the displacement occurs vertically, raising an object off of the ground, is known as gravitational potential energy. It is denoted by $U$. If $m$ is the mass of the object raised a height $h$ from the ground as shown in Fig. 8.3, then gravitational potential energy of the object is

$$
\begin{aligned}
\text { gravitational potential energy } & =\text { weight } \times \text { height } \\
U & =m g h
\end{aligned}
$$

The concept of potential energy can be used when dealing with conservative force that will be discussed later.


Figure 8.3: Potential energy

### 8.2.4 Potential Energy is converted to Kinetic Energy and vice-versa

Consider Fig. 8.1. Let $\vec{v}_{i}$ be the velocity of the particle at $P$ and $\vec{v}_{f}$ be at $P$. Considering $x y$ plane as the zero level and hight above it is the distance, that is ( $d=h$ height ). Its equation of motion can be written as

$$
\begin{aligned}
v_{f}^{2}-v_{i}^{2} & =2 g h \\
\frac{1}{2} m v_{f}^{2}-\frac{1}{2} m v_{i}^{2} & =m g h \\
\Delta T & =\Delta U
\end{aligned}
$$

Note only changes in potential energy can be measured. Total amount of energy at any instant cannot be determined.
At ground level all energy is kinetic energy and at maximum height $h$ all energy is potential energy.

### 8.3 Power

Rate of doing work by a force $\vec{F}$ is called power or activity.

$$
\begin{align*}
d P & =\frac{d W}{d t} \\
& =\vec{F} \cdot \frac{\overrightarrow{d r}}{d t}=\vec{F} \cdot \vec{v} \tag{8.3.1}
\end{align*}
$$

Also the power is defined as the rate at which energy is transferred by a force $\vec{F}$. Consider

$$
\begin{aligned}
\frac{d T}{d t} & =\frac{d}{d t}\left(\frac{1}{2} m v^{2}\right) \\
& =\frac{1}{2} m \frac{d}{d t}(\vec{v} \cdot \vec{v})=m \frac{d \vec{v}}{d t} \cdot \vec{v} \\
& =\vec{F} \cdot \vec{v} \\
& =P
\end{aligned}
$$

It is measured in Watts $(W) \rightarrow 1$ Joule of energy transferred in 1 second We usually measure it in $k W$ (kilowatts)

### 8.3.1 Efficiency

Ratio of output work to input work of a machine

$$
\text { Efficiency }=\frac{W_{\text {output }}}{W_{\text {input }}} \times 100
$$

### 8.4 Work done by a Variable Force

Consider a body moves under the influence of a force $\vec{F}(t)$. Suppose that the body moves a displacement $d \vec{r}(t)$ between time $t_{1}$ and $t_{2}$. Then the work done by the force is

$$
W=\int_{C} \vec{F} \cdot d \vec{r}
$$

As $F$ and $r$ are functions of $t$, hence the work done is

$$
W=\int_{t_{1}}^{t_{2}} \vec{F} \cdot d \vec{r} d t
$$

That is, work is the path integral of the force along the trajectory. Work may be either positive or negative, where in the latter case we will say that it is the body that has performed work.

### 8.5 Conservative Force

If the force field acting on a physical body is such that the work done along a closed path is zero, the force is called conservative. In other words we can say that a vector field is


Figure 8.4: Work done
called conservative if integrals along paths only depend on the end points and not on the trajectory.
Consider a particle is moving along a curve $C$ under the action of a variable force $F$. Let the particle moves from $A$ to $B$ and then from $B$ to $A$, forming a closed path. If the total work done is zero, the acting force is conservative. i.e.

$$
\begin{equation*}
W=\int_{C} F \cdot d r=0 \tag{8.5.1}
\end{equation*}
$$

If the force $F$ is uniquely defined at every point of a region of space, the set of all such forces is a called a force field. If at every point of the space, the force $F$ is conservative, then the force field is said to be conservative.
It is not always true that the work done by an external force is stored as some form of potential energy. This is only true if the force is conservative.
Examples: the force of gravity and the spring force are conservative forces.
For a non-conservative (or dissipative) force, the work done in going from A to B depends on the path taken.
Examples: friction and air resistance.

### 8.6 Examples of conservative and Non Conservative Force

## Field

In this section we will give some examples of conservative and non conservative systems.

### 8.6.1 The Earth's Gravitational Field is Conservative

The zero level of the potential energy is arbitrary; it can be assigned to any position. If the $x y$ plane is chosen the zero level of potential energy, the potential energy at any point A
is the work done by the force when the body moves from the point A to the point B with zero potential energy. So,

$$
U(A)=W_{A B}
$$

Consider a particle of mass $m$ is initially at $A$, the gravitational force is $F=m g$. The work done by this force along the path $A B$ is

$$
W_{A B}=m g(h-0)=m g h
$$

Near Earths surface, the work done by gravity on an object of mass $m$ depends only on


Figure 8.5: Work done
the change in the objects height $h$ that depends on the end points of the path.

## Vector Approach

Consider a particle of mass $m$ is initially at $A$, the gravitational force always acts downward, having only $z$ component, so can be written as

$$
\vec{F}=m g \hat{k}=\langle 0,0, m g\rangle
$$

and $d r$ can be written as

$$
d \vec{r}=d x \hat{i}+d y \hat{j}+d z \hat{k}=\langle d x, d y, d z\rangle
$$

The work done by this force along the path $A B$ is


Figure 8.6: Work done

$$
\begin{aligned}
W & =-\int_{A}^{B} \vec{F} \cdot d \vec{r} \\
& =\int_{B}^{A}\langle 0,0, m g\rangle \cdot\langle d x, d y, d z\rangle \\
& =m g \int_{B}^{A} d z \\
& =\left.m g \cdot z\right|_{B} ^{A} \\
& =m g \cdot\left(z_{A}-z_{B}\right) \\
& =m g \cdot\left(z_{2}-z_{1}\right)
\end{aligned}
$$

Here the work done depends upon the initial and final positions of the particle, and is independent of the path. Hence the force is a conservative force and the earth's gradational field is conservative.
2.

$$
\vec{F}=k \hat{s}
$$

where $k$ is some constant and $\hat{s}$ unit arc length. Also we can take $d r \equiv d s$. The work done by this force along the path $A B$ is


Figure 8.7: Work done

$$
\begin{aligned}
W & =\int_{A}^{B} k \hat{s} . d r=k \int_{A}^{B} \hat{s} . d s \\
& =k \int_{A}^{B} 1 d s \cos \theta \\
& =\left.k \cos \theta s\right|_{A} ^{B} \\
& =k \cos \theta\left(s_{B}-s_{A}\right)
\end{aligned}
$$

Here the work done depends upon the arc length of the path. Hence the force is not conservative force.

### 8.6.2 Potential Energy and Conservative Force

The potential energy of a particle in a field of force $F$ is defined as the total work done in moving a particle from its existing position to its standard position (zero level of the potential energy) along the curve.
Let $O$ be the origin of an inertia frame of reference fixed in space. Let $P_{0}$ be the position (standard) of a particle on a curve $C$ and $P(t)$ be an arbitrary existing position of a particle at any time $t$. Let

$$
\begin{aligned}
\overrightarrow{O P_{0}} & =\overrightarrow{r_{0}} \\
\overrightarrow{O P} & =\vec{r}
\end{aligned}
$$

Analytically we can write, the expression for the potential energy is

$$
\begin{aligned}
U_{(P)} & =\int_{r}^{r_{0}} \vec{F} \cdot \overrightarrow{d r} \\
& =-\int_{r_{0}}^{r} \vec{F} \cdot \overrightarrow{d r}
\end{aligned}
$$



Figure 8.8: Work done

Theorem 8.6.1. A vector field is conservative if and only if it is the gradient of a scalar field.

$$
\begin{equation*}
\vec{F}=-\overrightarrow{\nabla U} \tag{8.6.1}
\end{equation*}
$$

where $U(r)$ is called the potential field, or the potential energy; the negative sign is a convention whereby the force is directed in the direction of decreasing potential.

Proof Consider Fig., we can write


Figure 8.9: Work done

$$
\begin{aligned}
\vec{r} & =\langle x, y, z\rangle \\
\overrightarrow{r_{0}} & =\left\langle x_{0}, y_{0}, z_{0}\right\rangle \\
\overrightarrow{d r} & =\langle d x, d y, d z\rangle \\
\vec{F} & =\left\langle F_{x}, F_{y}, F_{z}\right\rangle \\
U & =U(x, y, z)
\end{aligned}
$$

Let $P_{0}$ be the zero level of potential energy, then $U$ at $P$ is

$$
\begin{align*}
U_{(P)} & =\int_{(x, y, z)}^{\left(x_{0}, y_{0}, z_{0}\right)}\left\langle F_{x}, F_{y}, F_{z}\right\rangle \cdot\langle d x, d y, d z\rangle \\
& =-\int_{\left(x_{0}, y_{0}, z_{0}\right)}^{(x, y, z)}\left(F_{x} d x+F_{y} d y+F_{z} d z\right) \\
& =-\int_{P_{0}}^{P} \vec{F} \cdot \overrightarrow{d r} \tag{8.6.2}
\end{align*}
$$

differentiating we have

$$
\begin{aligned}
d U_{(P)} & =-d\left[\int_{\left(x_{0}, y_{0}, z_{0}\right)}^{(x, y, z)}\left(F_{x} d x+F_{y} d y+F_{z} d z\right)\right] \\
& =-\left(F_{x} d x+F_{y} d y+F_{z} d z\right) \\
d U(x, y, z) & =\left(-F_{x} d x-F_{y} d y-F_{z} d z\right) \\
\frac{\partial U}{\partial x} d x+\frac{\partial U}{\partial y} d y+\frac{\partial U}{\partial z} d z & \left.=-F_{x} d x-F_{y} d y-F_{z} d z\right)
\end{aligned}
$$

$$
\begin{equation*}
\left(\frac{\partial U}{\partial x}+F_{x}\right) d x+\left(\frac{\partial U}{\partial y}+F_{y}\right) d y+\left(\frac{\partial U}{\partial z}+F_{z}\right) d z=0 \tag{8.6.3}
\end{equation*}
$$

Since $x, y$, and $z$ are linearly independent, so $d x, d y$, and $d z$ are also linearly independent. This implies that the coefficient of $d x$, $d y$, and $d z$ must be equal to zero. i.e.

$$
\begin{aligned}
& \frac{\partial U}{\partial x}+F_{x}=0 \\
& \frac{\partial U}{\partial y}+F_{y}=0 \\
& \frac{\partial U}{\partial z}+F_{z}=0
\end{aligned}
$$

or we have

$$
\begin{aligned}
& F_{x}=-\frac{\partial U}{\partial x} \\
& F_{y}=-\frac{\partial U}{\partial y} \\
& F_{z}=-\frac{\partial U}{\partial z}
\end{aligned}
$$

Hence $\vec{F}$ can be written as

$$
\begin{aligned}
\vec{F} & =\left\langle F_{x}, F_{y}, F_{z}\right\rangle=\left\langle-\frac{\partial U}{\partial x},-\frac{\partial U}{\partial y},-\frac{\partial U}{\partial z}\right\rangle \\
& =-\left\langle\frac{\partial}{\partial x}, \frac{\partial}{\partial y}, \frac{\partial}{\partial z}\right\rangle U(x, y, z) \\
& =-\nabla U
\end{aligned}
$$

where

$$
\nabla=\left\langle\frac{\partial}{\partial x}, \frac{\partial}{\partial y}, \frac{\partial}{\partial z}\right\rangle
$$

is an operator.
Conversely suppose that

$$
\vec{F}=-\nabla U
$$

The work done is

$$
\begin{align*}
W & =\int_{P}^{P_{0}} F \cdot d r \\
& =-\int_{P}^{P_{0}} \nabla U \cdot d r \\
& =-\int_{P}^{P_{0}}\left\langle\frac{\partial U}{\partial x}, \frac{\partial U}{\partial y}, \frac{\partial U}{\partial z}\right\rangle \cdot\langle d x, d y, d z\rangle \\
& =-\int_{P}^{P_{0}}\left(\frac{\partial U}{\partial x} d x+\frac{\partial U}{\partial y} d y+\frac{\partial U}{\partial z} d z\right) \\
& =-\int_{P}^{P_{0}} d U=-\left.U\right|_{P} ^{P_{0}}  \tag{8.6.4}\\
& =-U\left(P_{0}\right)+U(P) \\
& =\Delta U
\end{align*}
$$

Hence the work done along a trajectory $r$ connecting the points $P$ and $P_{0}$, is independent of path, so the vector field of force $F$ is conservative.

Theorem 8.6.2. A necessary and sufficient condition for a vector field to be conservative is

$$
\begin{equation*}
\operatorname{curl} \vec{F}=\vec{O} \tag{8.6.5}
\end{equation*}
$$

Proof Let $\vec{F}$ is conservative, Then there exist a function $U(x, y, z)$ of class $C^{2}$ (second order partial derivatives of $U$ exist and are continuous) and $\vec{F}$ can be expressed as

$$
\vec{F}=-\nabla U
$$

Apply curl on both sides

$$
\begin{aligned}
\operatorname{curl} \vec{F} & =-\operatorname{curl} \nabla U \\
& =-\nabla \times \nabla U
\end{aligned}
$$

This cross product can be written as

$$
\begin{aligned}
\operatorname{curl} \vec{F} & =\left|\begin{array}{ccc}
\hat{i} & \hat{j} & \hat{k} \\
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
\frac{\partial U}{\partial x} & \frac{\partial U}{\partial y} & \frac{\partial U}{\partial z}
\end{array}\right| \\
& =\left(\frac{\partial^{2} U}{\partial y \partial Z}-\frac{\partial^{2} U}{\partial z \partial y}\right) \hat{i}-\left(\frac{\partial^{2} U}{\partial z \partial x}-\frac{\partial^{2} U}{\partial x \partial z}\right) \hat{j}+\left(\frac{\partial^{2} U}{\partial x \partial y}-\frac{\partial^{2} U}{\partial y \partial x}\right) \hat{k}
\end{aligned}
$$

Since $U$ is of class $C^{2}$, then $\frac{\partial^{2} U}{\partial y \partial Z}=\frac{\partial^{2} U}{\partial z \partial y}$ and all other pairs are so. Hence we have

$$
\begin{aligned}
\operatorname{curl} \vec{F} & =\langle 0,0,0\rangle \\
& =\vec{O}
\end{aligned}
$$

Conversely suppose that

$$
\operatorname{curl} \vec{F}=\vec{O}
$$

Let

$$
\vec{F}=\langle P, Q, R\rangle
$$

be a force to do the work. Then

$$
\begin{aligned}
\left|\begin{array}{ccc}
\hat{i} & \hat{j} & \hat{k} \\
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
P & Q & R
\end{array}\right| & =\langle 0,0,0\rangle \\
\left(\frac{\partial R}{\partial y}-\frac{\partial Q}{\partial z}\right) \hat{i}+\left(\frac{\partial P}{\partial z}-\frac{\partial R}{\partial x}\right) \hat{j}+\left(\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}\right) \hat{k} & =0 \hat{i}+0 \hat{j}+0 \hat{k}
\end{aligned}
$$

Since the two vectors are equal, this mean that their corresponding elements are equal. i.e

$$
\begin{aligned}
& \left(\frac{\partial R}{\partial y}-\frac{\partial Q}{\partial z}\right)=0 \\
& \left(\frac{\partial P}{\partial z}-\frac{\partial R}{\partial x}\right)=0 \\
& \left(\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}\right)=0
\end{aligned}
$$

or we can write

$$
\begin{aligned}
& \frac{\partial R}{\partial y}=\frac{\partial Q}{\partial z} \\
& \frac{\partial P}{\partial z}=\frac{\partial R}{\partial x} \\
& \frac{\partial Q}{\partial x}=\frac{\partial P}{\partial y}
\end{aligned}
$$

which is possible only if there exist a function $U$ of class $C^{2}$ such that

$$
\vec{F}=-\vec{\nabla} U
$$

Hence $\vec{F}$ is conservative.

Example 8.6.1. The force

$$
\vec{F}=\langle x, y, z\rangle
$$

is conservative. Also find the corresponding potential function.
Solution For a conservative force we need to show only

$$
\operatorname{curl} \vec{F}=\vec{O}
$$

Next

$$
\begin{aligned}
\operatorname{curl} \vec{F} & =\left|\begin{array}{ccc}
\hat{i} & \hat{j} & \hat{k} \\
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
x & y & z
\end{array}\right| \\
& =\left(\frac{\partial z}{\partial y}-\frac{\partial y}{\partial z}\right) \hat{i}+\left(\frac{\partial x}{\partial z}-\frac{\partial z}{\partial x}\right) \hat{j}+\left(\frac{\partial y}{\partial x}-\frac{\partial x}{\partial y}\right) \hat{k}
\end{aligned}
$$

Since $x, y, z$ are linearly independent, that means

$$
\begin{aligned}
& \frac{\partial z}{\partial y}=0=\frac{\partial y}{\partial z} \\
& \frac{\partial x}{\partial z}=0=\frac{\partial z}{\partial x} \\
& \frac{\partial y}{\partial x}=0=\frac{\partial x}{\partial y}
\end{aligned}
$$

Then

$$
\begin{aligned}
\operatorname{curl} \vec{F} & =\langle 0,0,0\rangle \\
& =\vec{O}
\end{aligned}
$$

Hence the given force $\vec{F}$ is conservative and there exist a function $U$ of class $C^{2}$ such that

$$
\begin{aligned}
\vec{F} & =-\vec{\nabla} U \\
\langle x, y, z\rangle & =\left\langle-\frac{\partial U}{\partial x},-\frac{\partial U}{\partial y},-\frac{\partial U}{\partial z}\right\rangle
\end{aligned}
$$

The two vectors are equal, so there corresponding entries are equal.

$$
\begin{align*}
x & =-\frac{\partial U}{\partial x} & \text { or } & -\frac{\partial U}{\partial x}=x  \tag{8.6.6}\\
y & =-\frac{\partial U}{\partial y} & \text { or } & -\frac{\partial U}{\partial y}=y  \tag{8.6.7}\\
z & =-\frac{\partial U}{\partial z} & \text { or } & -\frac{\partial U}{\partial z}=z \tag{8.6.8}
\end{align*}
$$

Partially integrate (8.6.6) with respect to $x$

$$
\begin{align*}
-U & =\int x d x+f(y, z) \\
& =\frac{x^{2}}{2}+f(y, z) \tag{8.6.9}
\end{align*}
$$

Partially differentiate (8.6.9) with respect to $y$

$$
\begin{equation*}
-\frac{\partial U}{\partial y}=\frac{\partial f}{\partial y} \tag{8.6.10}
\end{equation*}
$$

Using (8.6.10) in (8.6.7)

$$
\begin{equation*}
\frac{\partial f}{\partial y}=y \tag{8.6.11}
\end{equation*}
$$

Partially integrate (8.6.11) with respect to $y$

$$
\begin{equation*}
f=\frac{x^{2}}{2}+g(z) \tag{8.6.12}
\end{equation*}
$$

Then (8.6.9) becomes

$$
-U=\frac{x^{2}}{2}+\frac{y^{2}}{2}+g(z)
$$

Partially differentiate (8.6.13) with respect to $z$

$$
\begin{equation*}
-\frac{\partial U}{\partial z}=\frac{d g}{d z} \tag{8.6.13}
\end{equation*}
$$

From (8.6.8) and (8.6.13), we can write

$$
\begin{equation*}
\frac{d g}{d z}=z \tag{8.6.14}
\end{equation*}
$$

Integrating (8.6.14)

$$
\begin{equation*}
g=\frac{z^{2}}{2}+c \tag{8.6.15}
\end{equation*}
$$

Using (8.6.15) in (8.6.13) we have

$$
-U=\frac{x^{2}}{2}+\frac{y^{2}}{2}+\frac{z^{2}}{2}+C
$$

Ignoring $C$, the corresponding potential function is

$$
\begin{equation*}
U=-\frac{1}{2}\left(x^{2}+y^{2}+z^{2}\right) \tag{8.6.16}
\end{equation*}
$$

From this potential function, the corresponding conservative force can be calculated as Let the force is

$$
\begin{aligned}
\vec{F} & =\langle P, Q, R\rangle \\
\vec{F} & =-\nabla U \\
\langle P, Q, R\rangle & =\left\langle-\frac{\partial U}{\partial X},-\frac{\partial U}{\partial Y},-\frac{\partial U}{\partial z}\right\rangle
\end{aligned}
$$

From (8.6.16), we have

$$
\begin{aligned}
-\frac{\partial U}{\partial x} & =x \\
-\frac{\partial U}{\partial y} & =y \\
-\frac{\partial U}{\partial z} & =z
\end{aligned}
$$

Hence the corresponding conservative force is

$$
\vec{F}=\langle x, y, z\rangle
$$

Example 8.6.2. A particle moves under the action of a force

$$
\vec{F}=\left\langle 3 x^{2}+6 x y, 3 x^{2}-3 y^{2}, 0\right\rangle
$$

from $A(1,1,0)$ to $B(2,3,0)$. Then determine
(a) Is the force conservative?
(b) If yes, find the corresponding potential energy function.
(c) The work done from $A$ to $B$

Solution For a conservative force we need to show only

$$
\operatorname{curl} \vec{F}=\vec{O}
$$

Next

$$
\begin{aligned}
\operatorname{curl} \vec{F} & =\left|\begin{array}{ccc}
\hat{i} & \hat{j} & \hat{k} \\
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
3 x^{2}+6 x y & 3 x^{2}-3 y^{2} & 0
\end{array}\right| \\
& =\left(\frac{\partial(0)}{\partial y}-\frac{\partial\left(3 x^{2}-3 y^{2}\right)}{\partial z}\right) \hat{i}+\left(\frac{\partial\left(3 x^{2}+6 x y\right)}{\partial z}-\frac{\partial(0)}{\partial x}\right) \hat{j} \\
& +\left(\frac{\partial\left(3 x^{2}-3 y^{2}\right)}{\partial x}-\frac{\partial\left(3 x^{2}+6 x y\right)}{\partial y}\right) \hat{k}
\end{aligned}
$$

Since $x, y, z$ are linearly independent, then

$$
\begin{aligned}
\operatorname{curl} \vec{F} & =(0) \hat{i}+(0) \hat{j}+(6 x-6 x) \hat{k} \\
& =\langle 0,0,0\rangle \\
& =\vec{O}
\end{aligned}
$$

Hence the given force $\vec{F}$ is conservative.
(b) Since the given force is conservative, then there exist a function $U$ of class $C^{2}$ such that

$$
\begin{aligned}
\vec{F} & =-\vec{\nabla} U \\
\left\langle 3 x^{2}+6 x y, 3 x^{2}-3 y^{2}, 0\right\rangle & =\left\langle-\frac{\partial U}{\partial x},-\frac{\partial U}{\partial y},-\frac{\partial U}{\partial z}\right\rangle
\end{aligned}
$$

The two vectors are equal, so there corresponding entries are equal.

$$
\begin{align*}
& 3 x^{2}+6 x y=-\frac{\partial U}{\partial x} \quad \text { or } \quad-\frac{\partial U}{\partial x}=3 x^{2}+6 x y  \tag{8.6.17}\\
& 3 x^{2}-3 y^{2}=-\frac{\partial U}{\partial y} \quad \text { or } \quad-\frac{\partial U}{\partial y}=3 x^{2}-3 y^{2}  \tag{8.6.18}\\
& 0=-\frac{\partial U}{\partial z} \quad \text { or } \quad-\frac{\partial U}{\partial z}=0 \tag{8.6.19}
\end{align*}
$$

The given force is a two dimensional force, so we can ignore (8.6.19) Partially integrate (8.6.17) with respect to $x$

$$
\begin{align*}
-U & =\int\left(3 x^{2}+6 x y\right) d x+f(y) \\
& =x^{3}+3 x^{2} y+f(y) \tag{8.6.20}
\end{align*}
$$

Partially differentiate (8.6.20) with respect to $y$

$$
\begin{equation*}
-\frac{\partial U}{\partial y}=3 x^{2}+\frac{d f}{d y} \tag{8.6.21}
\end{equation*}
$$

Using (8.6.21) in (8.6.18)

$$
\begin{equation*}
\frac{d f}{d y}=-3 y^{2} \tag{8.6.22}
\end{equation*}
$$

Partially integrate (8.6.22) with respect to $y$

$$
\begin{equation*}
f=-y^{3}+C \tag{8.6.23}
\end{equation*}
$$

Then (8.6.20) becomes

$$
\begin{equation*}
-U=x^{3}+3 x^{2} y-y^{3}+C \tag{8.6.24}
\end{equation*}
$$

Ignoring $C$, the corresponding potential function is

$$
\begin{equation*}
U=-x^{3}-3 x^{2} y+y^{3} \tag{8.6.25}
\end{equation*}
$$

(c) Work done from $A$ to $B$ can be calculated by using (8.6.4)

$$
W=-\left.U\right|_{A} ^{B}
$$

Using (8.6.25) the work done is

$$
\begin{aligned}
W & =\left|x^{3}+3 x^{2} y-y^{3}\right|_{(1,1,0)}^{(2,3,0)} \\
& =[(8+36-27)-(1+3-1)]=[17-3] \\
& =14 J
\end{aligned}
$$

Example 8.6.3. Examples of potential energy functions.

1. For a mass under the influence of earth gravity

$$
U(r)=U(z)=m g z
$$

2. For a mass suspended on a spring,

$$
U(z)=\frac{1}{2} k z^{2}
$$

3. For a planet under the influence of a stars gravity,

$$
U(r)=-\frac{G M m}{r^{2}}
$$

### 8.7 Law of Conservation of Energy

StatementWithin a closed, isolated system, energy can change form, but the total amount of energy is constant

$$
\begin{equation*}
T_{\text {initial }}+U_{\text {initial }}=T_{\text {final }}+U_{\text {final }} \tag{8.7.1}
\end{equation*}
$$

The sum of kinetic energy and potential energy represents the total mechanical energy. Proof Consider a particle of mass $m$ is moving under the influence of a conservative force field $F$. If the particle performs a trajectory $r(t)$ connecting the points $r\left(t_{1}\right)$ and $r\left(t_{2}\right)$ then from (8.6.4), we can write

$$
\begin{align*}
-U\left(r t_{2}\right)+U\left(r t_{1}\right) & =\int_{P}^{P_{0}} \vec{F} \cdot d \vec{r} \\
& =m \int_{P}^{P_{0}} \vec{a} \cdot d \vec{r} \tag{8.7.2}
\end{align*}
$$

Using (8.2.2) and (8.2.3), (8.7.2) becomes

$$
\begin{align*}
-U\left(r t_{2}\right)+U\left(r t_{1}\right) & =\int_{t_{1}}^{t_{2}} \frac{d \vec{v}}{d t} \cdot \vec{v} d t \\
& =\int_{t_{1}}^{t_{2}} \frac{1}{2} m \frac{d v^{2}}{d t} d t \\
& =\int_{t_{1}}^{t_{2}} \frac{d}{d t} K d t \\
& =T\left(v\left(t_{2}\right)\right)-T\left(v\left(t_{1}\right)\right) \\
\Delta U & =\Delta T \tag{8.7.3}
\end{align*}
$$

It can also be written as

$$
\begin{equation*}
T\left(v\left(t_{1}\right)\right)+U\left(r t_{1}\right)=T\left(v\left(t_{2}\right)\right)+U\left(r t_{2}\right) \tag{8.7.4}
\end{equation*}
$$

8.7.4 is known as the law of conservation of energy.

Defining the total mechanical energy, or simply the energy,

$$
\begin{equation*}
E(r, v)=U(r)+T(v), \tag{8.7.5}
\end{equation*}
$$

we conclude that it assumes the same value at time $t_{1}$ and $t_{2}$, i.e., it is conserved (it is a function of the trajectory whose value remains constant in time).

Theorem 8.7.1. In a conservative vector field, the total energy (mechanical) is constant throughout the motion.

Proof It is another to proof the law of conservation of energy. It can be proved by showing

$$
\frac{d}{d t} E(r, v)=0
$$

Taking time derivative of (8.7.5)

$$
\begin{align*}
\frac{d}{d t} E(r, v) & =\frac{d}{d t}[U(r)+T(v)] \\
& =\frac{d}{d t}[U(r(t))+T(v(t))] \tag{8.7.6}
\end{align*}
$$

Now by chain rule, the first term on right hand side can be written as

$$
\begin{aligned}
\frac{d}{d t}[U(r(t))] & =\frac{\partial U}{\partial x} \frac{d x}{d t}+\frac{\partial U}{\partial y} \frac{d y}{d t}+\frac{\partial U}{\partial z} \frac{d z}{d t} \\
& =\overrightarrow{\nabla U} \cdot \overrightarrow{\vec{r}}
\end{aligned}
$$

Since $\vec{F}$ is conservative, then by (8.6.1), we can write

$$
\begin{equation*}
\frac{d}{d t}[U(r(t))]=-\vec{F} \cdot \vec{v} \tag{8.7.7}
\end{equation*}
$$

Again by chain rule, the second term on right hand side can be written as

$$
\begin{align*}
\frac{d}{d t}[T(v(t))] & =\frac{d}{d t}\left[\frac{1}{2} m v^{2}\right] \\
& =\frac{1}{2} m \frac{d}{d t} v^{2} \\
& =m \frac{d \vec{v}}{d t} \cdot \vec{v} \\
& =\vec{F} \cdot \vec{v} \tag{8.7.8}
\end{align*}
$$

Using (8.7.7) and (8.7.8), (8.7.6) becomes

$$
\begin{equation*}
\frac{d}{d t} E(r, v)=-\vec{F} \cdot \vec{v}+\vec{F} \cdot \vec{v}=0 \tag{8.7.9}
\end{equation*}
$$

(8.7.4) and (8.7.9) represent the principle of conservation of energy.

Second Method We will show that the sum of kinetic and potential energies is constant. By Newton's second law of motion its equation of motion is

$$
\begin{equation*}
F=m \ddot{r} \tag{8.7.10}
\end{equation*}
$$

Multiply (8.7.10) with $\dot{r}=\frac{d r}{d t}$,

$$
\begin{equation*}
m \dot{r} \ddot{r}=F \frac{d r}{d t} \tag{8.7.11}
\end{equation*}
$$

Integrating (8.7.11) with respect to $t$

$$
\frac{1}{2} m \dot{r}^{2}=\int F \frac{d r}{d t} d t+\text { constant }
$$

or we can write

$$
\begin{equation*}
\frac{1}{2} m \dot{r}^{2}-\int F \cdot d r=\text { constant } \tag{8.7.12}
\end{equation*}
$$

Since the force is conservative, so we have

$$
\vec{F}=-\overrightarrow{\nabla U}
$$

where $U(r)$ is the potential energy and can be written as

$$
U=-\int F \cdot d r
$$

and the term $\frac{1}{2} m \dot{r}^{2}$ is the kinetic energy of the system. Using these results, (8.7.12) becomes

$$
\begin{equation*}
T+U=\text { constant } \tag{8.7.13}
\end{equation*}
$$

Hence the total energy of the system is conserved. The conservation of total mechanical energy when forces are conservative is useful as shows in the following examples.

Example 8.7.1. A body is dropped (at rest) from a height of $h$ meters. If the motion is free fall, show that the energy of the system is conserved.


Figure 8.10: Downward motion

Solution We will show that the sum of kinetic and potential energies is constant. The particle is executing one dimensional motion and its motion is along $z$-axis. Let any time $t$ the particle is at $P$ as shown in the Fig 8.10. At $P$ the kinetic energy is

$$
T=\frac{1}{2} m \dot{z}^{2}
$$

Taking ground ( $x y$ plane) as zero level for potential energy, then potential energy is

$$
U=m g z
$$

By Newton's second law of motion its equation of motion is

$$
\begin{align*}
F & =-W \\
m \ddot{z} & =-m g \tag{8.7.14}
\end{align*}
$$

Multiply (8.7.14) with $\dot{z}$,

$$
\begin{equation*}
m \dot{z} \ddot{z}+m g \dot{z}=0 \tag{8.7.15}
\end{equation*}
$$

(8.7.15) can be written as

$$
\begin{equation*}
\frac{d}{d t}\left(\frac{1}{2} m \dot{z}^{2}+m g z\right)=0 \tag{8.7.16}
\end{equation*}
$$

The term $\frac{1}{2} m \dot{z}^{2}$ is the kinetic energy and $m g z$ is the potential energy of the system. Using these results, (8.7.16) becomes

$$
\begin{align*}
\frac{d}{d t}(T+U) & =0 \\
\frac{d E}{d t} & =0 \tag{8.7.17}
\end{align*}
$$

Integrating (8.7.17), we have

$$
\begin{equation*}
E=\text { constant } \tag{8.7.18}
\end{equation*}
$$

Hence the total energy of the system is conserved.

Example 8.7.2. A body is dropped (at rest) from a height of $h$ meters. If the motion is free fall, use energy approach to find speed with which it will hit the ground.

Solution As the body starts from rest, so the initial data is

$$
\begin{aligned}
t_{0} & =0 \\
v_{0} & =0 \\
z_{0} & =h
\end{aligned}
$$

One way to solve it is via the equations of motion:
The other way of solving this exercise is with energies. Taking $x y$ plane as zero level for potential energy. At $P$ the potential energy is

$$
U(z)=m g z
$$

the conservation of energy implies that

$$
U(z(0))+\frac{m v^{2}(0)}{2}=U\left(z\left(t_{1}\right)\right)+\frac{m v^{2}\left(t_{1}\right)}{2}
$$

i.e.,

$$
\begin{aligned}
m g h+0 & =0+\frac{m v^{2}\left(t_{1}\right)}{2} \\
v\left(t_{1}\right) & =\sqrt{2 h g} .
\end{aligned}
$$

which gives the exact same answer.
Example 8.7.3. Earth does not perform any work on the moon because the trajectory of the moon is perpendicular to the vector that connects the moon to the earth, i.e., it is (approximately) perpendicular to the force of gravity.


Figure 8.11: Downward motion

Remark 8.7.1. For a single particle with constant mass $m$, Newtons equations for the kinetic energy is given by (8.7.8)

$$
\frac{d}{d t}(T(v(t)))=\vec{F} \cdot \vec{v}
$$

and more generally, if the mass can vary, then

$$
\frac{d}{d t}(m T(v(t)))=\vec{F} \cdot \vec{p}
$$

## Exercises

1. A force of magnitude 20 N is applied on cart and it moves a distance of 10 m Find the work done if the angle between force and distance is as following: (a) $0^{\circ}$, (b) $30^{\circ}$ (c) $45^{\circ}$ (d) $60^{\circ}$ (e) $90^{\circ}$, (f) $120^{\circ}$ and (g) $180^{\circ}$.
2. A force of $400 N$ is applied on a block to reach the top of $2 m$ long smooth ramp that is inclined at an angle of $30^{\circ}$ with the ground (Figure 8.12). Let there are no frictional forces. Find the work done if the angle between force and ramp is as following: (a) $0^{\circ}$, (b) $30^{\circ}$ (c) $45^{\circ}$ (d) $60^{\circ}$ (e) $90^{\circ}$, (f) $120^{\circ}$ and (g) $135^{\circ}$.


Figure 8.12: Block on inclined plane
3. A wagon is pulled horizontally by exerting a constant force of 50 N on the handle at an angle of $60^{\circ}$ with the horizontal. How much work is done in moving the wagon 10 m ?
4. A force of $\vec{F}=\langle 3,-1,2\rangle N$ is applied to a point that moves on a line from $A(0,1,-1)$ to $B(4,1,2)$. If distance is measured in feet, how much work is done?
5. Determine which of the following forces are conservative. If a force is conservative find the corresponding potential energy function.
(a) $\vec{F}=x^{2} y z^{3} \hat{i}+2 x y^{2} \sin z \hat{j}+3 z e^{y} \hat{k}$
(b) $\vec{F}=x^{2} e^{y} \hat{i}+2 x e^{y} \hat{j}+3 \cos y e^{x} \hat{k}$
(c) $\vec{F}=x^{2} y \hat{i}+2 x y^{2} z^{3} \hat{j}+3 z e^{x} \hat{k}$
6. A particle moves under the action of a force

$$
\vec{F}=\left\langle y^{2} \cos x+z^{3}, 2 y \sin x-4,3 x z^{2}+2\right\rangle
$$

from $A(0,1,-1)$ to $B\left(\frac{\pi}{2},-1,2\right)$. Then determine
(a) The force is conservative.
(b) Find the corresponding potential energy function.
(c) The work done from $A$ to $B$
7. The escape velocity of a particle on earth is the minimum velocity required in order for a particle to escape from earths gravitational field. Use the conservation of energy to calculate the escape velocity. Could you obtain this result by directly solving Newtons equations, which for motion along the radial direction take the form,

$$
m \frac{d^{2} r}{d t^{2}}=\frac{-G M m}{r^{2}}
$$

with initial data $r(0)=R$ and $v(0)=v_{0}$, where $R$ is the radius of earth.

## Chapter 9

## Virtual Displacement and Virtual

## Work

The concepts of virtual displacement and virtual work are very useful and are given next.

### 9.0.1 Virtual Displacement

A hypothetical displacement of a system in which the forces and constraints remain unchanged and which takes place during infinitesimal time interval is called virtual displacement. It is denoted by $\delta r_{i}$ for the $i t h$ particle.
Note: During this displacement, the forces of constraints do not do work.

### 9.0.2 Real and Virtual Displacement

Let $\overrightarrow{r_{i}}$ be the position vector of the $i t h$ particle having generalized coordinates $q_{i}$ at time $t$. Then

$$
\begin{equation*}
r_{i}=r_{i}\left(q_{i}, t\right) \tag{9.0.1}
\end{equation*}
$$

and the quantity

$$
\begin{equation*}
d r_{i}=\frac{\partial r_{i}}{\partial q_{i}} d q_{i}+\frac{\partial r_{i}}{\partial t} d t \tag{9.0.2}
\end{equation*}
$$

is called the real displacement. If $t$ is fixed then $d t=0$ and the quantity

$$
\begin{equation*}
\delta r_{i}=\frac{\partial r_{i}}{\partial q_{i}} \delta q_{i} \tag{9.0.3}
\end{equation*}
$$

is called the virtual displacement.

### 9.0.3 Virtual Work

The work done by a force in virtual displacement.

Example 9.0.1. A particle of mass $m$ moves under the central force $F=-\mu \frac{m}{r^{2}}$, where $\mu$ is some constant. Find virtual work done.

The particle moves in polar coordinates, so $r$ and $\theta$ are the generalized coordinates. Then $r, \theta, \dot{r}$ and $\dot{\theta}$ are linearly independent. The force acting on the particle is

$$
F=-\mu \frac{m}{r^{2}}
$$

The generalized force $F$ can be written in polar components as

$$
\begin{aligned}
& F_{r}=-\mu \frac{m}{r^{2}} \\
& F_{\theta}=0
\end{aligned}
$$

The virtual work done is


Figure 9.1: Polar motion

$$
\begin{aligned}
\delta W & =\sum_{i=1}^{2} F_{i} \cdot \delta q_{i} \\
& =F_{1} \cdot \delta q_{1}+F_{2} \cdot \delta q_{2} \\
& =F_{r} \cdot \delta r+F_{\theta} \cdot \delta \theta \\
& =F_{r} \cdot \delta r
\end{aligned}
$$

### 9.1 Workless Constraints

In the case of a displacement consistent with the constraints of a system, the forces of constraints generally do no work. Thus, for example, if a particle in contact with a smooth plane, is displaced along the plane, the reactive force, being perpendicular to the displacement, does zero work. Some of the usual workless constraints are described below:

1. Reaction of a smooth with which the body is in contact. For, in such a case, the reaction of the surface at a point of contact is entirely normal to the surface and, therefore, does zero work.
2. Reaction at a fixed point or fixed axis of a body.

For in this case, displacement of the point of application of any reactive force is zero, and so the work done by it vanishes
3. Reaction at the point of contact of a fixed surface on which a body rolls without sliding. For, the point of contact is instantaneously at rest, so its displacement in the direction of the reaction is zero.
4. The mutual action and reaction of two bodies which roll over each other. The bodies, when regarded as a system, will exert equal and opposite forces on each other. The algebraic sum of the works done by such forces in any displacement, therefore, vanishes.
5. Tension of an inextensible string.

### 9.1.1 Principle of Virtual Work

The necessary and sufficient condition for a system of $N$ particles to be in equilibrium is the total virtual work done by applied forces is zero.
Proof: Consider a system of $N$ particles. Let $Q_{i}$ be the force acting on the $i$ th particle. Then

$$
\begin{equation*}
Q_{i}=F_{i}+f_{i} \tag{9.1.1}
\end{equation*}
$$

Where $F_{i}$ are external applied forces and $f_{i}$ are constraint forces. If $\delta r_{i}$ is the virtual displacement of the $i t h$ particle. Then the virtual work is

$$
\begin{equation*}
\delta W_{i}=\left(F_{i}+f_{i}\right) \cdot \delta r_{i} \tag{9.1.2}
\end{equation*}
$$

Let the system be in equilibrium, then

$$
\begin{array}{rlll}
Q_{i} & =0 & \forall i \\
\Rightarrow \delta W_{i} & = & 0 & \forall i \tag{9.1.4}
\end{array}
$$

And for the whole system

$$
\begin{aligned}
\sum_{i=1}^{N} \delta W_{i} & =\sum_{i=1}^{N} Q_{i} \cdot \delta r_{i}=0 \\
& =\sum_{i=1}^{N}\left(F_{i}+f_{i}\right) \cdot \delta r_{i}=0 \\
& =\sum_{i=1}^{N} F_{i} \cdot \delta r_{i}+\sum_{i=1}^{N} f_{i} \cdot \delta r_{i}=0
\end{aligned}
$$

Since the work done by the constraint forces is zero, we have

$$
\begin{equation*}
\sum_{i=1}^{N} \delta W_{i}=\sum_{i=1}^{N}\left(F_{i} . \delta r_{i}\right)=0 \tag{9.1.5}
\end{equation*}
$$

Conversely suppose that the total work done by applied forces is zero. Then

$$
\sum_{i=1}^{N} \delta W_{i}=0
$$

If $\delta r_{i}$ is the virtual displacement for the applied force $F_{i}$, then we have

$$
\sum_{i=1}^{N} F_{i} \cdot \delta r_{i}=0
$$

or

$$
\sum_{i=1}^{N} F_{i}=0
$$

Hence the system is in equilibrium.

## Chapter 10

## Centers of Mass and Gravity

The concepts of centre of mass and center of gravity of a system are very useful in mechanics. Many of the important quantities are similarly simplified using the center of mass. In this chapter we shall state some basic definitions and some usual methods to compute them.
Homogeneous object: A material or a body is called homogeneous if its composition is uniform throughout and inhomogeneous otherwise. It means a homogeneous material has the same properties at every point of the space. For example, an object of uniform density is sometimes described as homogeneous.

### 10.1 Density of Homogeneous Material

Density is a very important measurement of a material. Objects of same material regardless of how big or small an object is, their density will be same. For example, a watch made of gold and a brick made of gold have different masses and volumes, but they have the same density. It is denoted by $\rho$. We can define it, keeping in mind the dimensions of the object.

### 10.1.1 Density of One Dimensional Object

The density of one dimensional homogeneous material is its mass per unit length. If a homogeneous body has mass $m$ and length $l$, then its density is given by

$$
\begin{equation*}
\rho=\frac{m}{l} \tag{10.1.1}
\end{equation*}
$$

The mass $m$ of a homogeneous body can be expressed as

$$
\begin{equation*}
m=\rho l \tag{10.1.2}
\end{equation*}
$$

### 10.1.2 Density of Two Dimensional Object

The density of two dimensional homogeneous material is its mass per unit area. If a homogeneous body has mass $m$ and area $A$, then its density is given by

$$
\begin{equation*}
\rho=\frac{m}{A} \tag{10.1.3}
\end{equation*}
$$

The mass $m$ of a two dimensional homogeneous object can be expressed as

$$
\begin{equation*}
m=\rho A \tag{10.1.4}
\end{equation*}
$$

The above definitions are just to understand the concept. For physical bodies, the following definition is applicable.

### 10.1.3 Density of Three Dimensional Object

The density of three dimensional homogeneous material is its mass per unit volume. If a homogeneous body has mass $m$ and volume $V$, then its density is given by

$$
\begin{equation*}
\rho=\frac{m}{V} \tag{10.1.5}
\end{equation*}
$$

The mass $m$ of a three dimensional homogeneous object can be expressed as

$$
\begin{equation*}
m=\rho V \tag{10.1.6}
\end{equation*}
$$

Example 10.1.1. A table and a chair are made up of red cedar. If the mass and volume of table are 49.9 kg and $0.13 \mathrm{~m}^{3}$ respectively, and the mass and volume of chair are 19.2 kg and $0.05 \mathrm{~m}^{3}$ respectively. Is the density of both objects same?

Solution: The given data is

$$
\begin{aligned}
m_{t} & =49.9 \mathrm{~kg} \\
V_{t} & =0.13 \mathrm{~m}^{3} \\
m_{c} & =19.2 \mathrm{~kg} \\
V_{c} & =0.05 \mathrm{~m}^{3}
\end{aligned}
$$

Using (10.1.5), the density of table is

$$
\begin{aligned}
\rho_{t} & =\frac{m}{V}=\frac{49.9}{0.13} \\
& =384 \mathrm{~kg} / \mathrm{m}^{3}
\end{aligned}
$$

and the density of chair is

$$
\begin{aligned}
\rho_{c} & =\frac{19.2}{0.05} \\
& =384 \mathrm{~kg} / \mathrm{m}^{3}
\end{aligned}
$$

The table and chair has same density. It means, density is the property of a material. Lamina: A lamina is an idealized flat object that has negligible thickness so that it is viewed as a two-dimensional plane region (see Fig. 10.1).


Figure 10.1: lamina

Example 10.1.2. A triangular lamina with vertices ( 0,0 ), ( 0,1 ), and ( 1,0 ) has mass 3 kg . If the length is measured in meters, find its density.

Solution: The given triangle is right angle triangle with base $=1=$ perpendicular, its area is

$$
A=\frac{1}{2}(1)(1)=\frac{1}{2} m^{2}
$$

(10.1.3), its density is given by

$$
\begin{aligned}
\rho & =\frac{m}{A}=\frac{3}{1 / 2} \\
& =6 \mathrm{~kg} / \mathrm{m}^{2}
\end{aligned}
$$

### 10.2 Moment of Mass

Consider a regular trihedral system with $O$ as origin. Let a mass $m$ is located at $P$ at a distance $r$ from $O$ as shown in Fig. 10.2, then its moment about $O$ is

$$
\begin{equation*}
M=m r \tag{10.2.1}
\end{equation*}
$$



Figure 10.2: Moment of mass

In words, the moment of the mass about $O$, is the mass multiplied by its distance from $O$. The units of moment in $S I$ will be $\mathrm{kg} . \mathrm{m}$.
Note: A large moment corresponds to a large turning effect.
Example Let a mass of 10 kg is placed at a distance 8 m from origin, then its moment is $80 \mathrm{~kg} . \mathrm{m}$. If the same mass is placed at a distance 10 m from origin, then its moment is $100 \mathrm{~kg} . \mathrm{m}$.

### 10.3 Center of Gravity

Earth attracts every body by a constant gravitational force (weight of the body). As a body is composed of many particles so each particle is affected by gravity, hence a large number of forces are acting on the entire body. The point at which the resultant of these forces acts is called center of gravity of the body. It can be defined as an imaginary point in a body of matter where the total weight of the body may be thought to be located.

### 10.4 Center of Mass

For every system of mass $m$, there is a unique location in space, where all the mass can be assumed to be located. This place is called the center of mass, and is defined as point with respect to which the linear moment of mass $m$ is zero. It is commonly designated by $c . m$ or $C$.
Note: Center of mass is independent of gravitational field while center of gravity is affected by gravitational field.
When the gravitational field is uniform, the center of mass is also its center of gravity but if the body is lying in varying gravitational fields, the center of gravity will be shifted from
center of mass towards stronger gravitational field. For example if a stronger gravitational field is found towards right and a weaker gravitational field is found towards left of a body, the center of mass is unmoved but the center of gravity will be shifted towards stronger gravitational field.
Here we will consider only earth's gravitational field that is uniform, hence the center of mass will be the center of gravity of the body.

### 10.4.1 Center of Mass of a System of Two Particles

Consider a regular trihedral system and two particle of mass $m_{1}$ and $m_{2}$, situated at point $P_{1}$ and $P_{2}$, whose position vectors relative to origin $O$ are $\vec{r}_{1}$ and $\vec{r}_{2}$. At center of mass, the linear moment of mass is zero. Mathematically

$$
\begin{equation*}
m_{1} \vec{r}_{1}+m_{2} \vec{r}_{2}=0 \tag{10.4.1}
\end{equation*}
$$

### 10.4.2 Center of Mass of a Set of $n$ Particles

Consider a regular trihedral system and a set of $n$ particles of masses $m_{1}, m_{2}, \ldots, m_{n}$, situated at point $P_{1}, P_{2}, \ldots, P_{n}$, whose position vectors relative to origin $O$ are $\vec{r}_{1}, \vec{r}_{2}, \ldots, \vec{r}_{n}$. At center of mass, the sum of linear moments of all masses is zero. Mathematically

$$
\begin{equation*}
\sum_{i=1}^{n} m_{i} \vec{r}_{i}=0 \tag{10.4.2}
\end{equation*}
$$

Theorem 10.4.1. Every set of particles has one and only center of mass.
Proof Consider a regular trihedral system and a system of $n$ particles of masses $m_{1}, m_{2}, \ldots, m_{n}$, situated at point $P_{1}, P_{2}, \ldots, P_{n}$, whose position vectors relative to origin $O$ are $\vec{r}_{1}, \vec{r}_{2}, \ldots, \vec{r}_{n}$. Suppose $C$ is a center of mass of the system and $\vec{r}$ be its position vector relative to $O$. Then the position vector of $P_{i}$ relative to $C$ is $\vec{r}_{i}-\vec{r}$. Then by definition, at $C$ the sum of moments of all masses is zero.

$$
\begin{aligned}
\sum_{i=1}^{n} m_{i}\left(\vec{r}_{i}-\vec{r}\right) & =0 \\
\sum_{i=1}^{n} m_{i} \vec{r}_{i}-\vec{r} \sum_{i=1}^{n} m_{i} & =0
\end{aligned}
$$

or we can write

$$
\vec{r} \sum_{i=1}^{n} m_{i}=\sum_{i=1}^{n} m_{i} \vec{r}_{i}
$$



Figure 10.3: center of mass
therefore

$$
\begin{equation*}
\vec{r}_{m}=\frac{\sum_{i=1}^{n} m_{i} \vec{r}_{i}}{\sum_{i=1}^{n} m_{i}} \tag{10.4.3}
\end{equation*}
$$

(10.4.3) gives the position vector of $C$ relative to $O$. Let $C^{\prime}$ be an other center of mass of the system and $\overrightarrow{r^{\prime}}$ be its position vector relative to $O$. Then the position vector of $P_{i}$ relative to $C$ is $\vec{r}_{i}-\overrightarrow{r^{\prime}}$. Then by definition, at $C^{\prime}$ the sum of moments of all masses is zero.

$$
\sum_{i=1}^{n} m_{i}\left(\vec{r}_{i}-\overrightarrow{r^{\prime}}\right)=0
$$

with the same above reasoning, we can write

$$
\begin{equation*}
{\overrightarrow{r^{\prime}}}_{m}=\frac{\sum_{i=1}^{n} m_{i} \vec{r}_{i}}{\sum_{i=1}^{n} m_{i}} \tag{10.4.4}
\end{equation*}
$$

From (10.4.3) and (10.4.4), we can write

$$
{\overrightarrow{r^{\prime}}}_{m}=\vec{r}_{m}
$$

Hence the system has one and only center of mass.

Example 10.4.1. Find center of mass of the system consisting of two particles connected by a massless rod given in the following cases:
(a) Both masses are 1 kg and length of rod is 2 m .
(b) The mass on right from $O$ is 2 kg and the mass on left is 1 kg . The length of rod is $2 m$.
(c) Both masses are 1 kg . The mass on right is 1.5 m away from $O$ and mass on left from $O$ is $1 m$ away from $O$.

Solution: The rod is considered to be 1 dimensional object just to understand the concept. And for one dimensional motion,+- signs are enough to represent the direction of a vector.
(a) Both masses are same and length of rod is 2 m .

Let the center of the rod be at the origin. Let one mass is at $A$ with position vector 1 m and the other mass is at $B$ with position vector -1 m . The system is shown the Fig. 10.4. Here $n=2$. Using (10.4.3), the center of mass of the system is


Figure 10.4: System of 2 particles with same masses and same distances

$$
\begin{aligned}
\vec{r}_{m} & =\frac{\sum_{i=1}^{2} m_{i} \vec{r}_{i}}{\sum_{i=1}^{2} m_{i}}=\frac{m_{1} \vec{r}_{1}+m_{2} \vec{r}_{2}}{m_{1}+m_{2}} \\
& =\frac{1(1)+1(-1)}{1+1}=\frac{0}{2} \\
& =0 m
\end{aligned}
$$

In this case origin is the center of mass.
(b) The mass on right from $O$ is 2 kg and the mass on left from $O$ is 1 kg . The length of $\operatorname{rod}$ is 2 m .

Let the center of the rod be at the origin. Let the mass of 2 kg is at $A$ with position vector 1 and mass of 1 kg is at $B$ with position vector -1 . The system is shown the Fig. 10.5. Here $n=2$. Using (10.4.3), the position vector of center of mass of the system is


Figure 10.5: System of 2 particles with different masses and same distances

$$
\begin{aligned}
\vec{r}_{m} & =\frac{m_{1} \vec{r}_{1}+m_{2} \vec{r}_{2}}{m_{1}+m_{2}} \\
& =\frac{2(1)+1(-1)}{1+1}=\frac{1}{2} \\
& =0.5 \mathrm{~m}
\end{aligned}
$$

In this case the center of mass is shifted towards right from origin.
(c) Both masses are 1 kg . The mass on right is 1.5 m away from $O$ and mass on left is 1 m away from $O$.

Let one mass 1 kg is at $A$ with position vector 1.5 and mass 1 kg is at $B$ with position vector -1 . The system is shown the Fig. 10.6. Here $n=2$. Using (10.4.3), the center of


Figure 10.6: System of 2 particles with same masses and different distances
mass of the system is

$$
\begin{aligned}
\vec{r}_{m} & =\frac{m_{1} \vec{r}_{1}+m_{2} \vec{r}_{2}}{m_{1}+m_{2}} \\
& =\frac{1(1.5)+1(-1)}{1+1}=\frac{0.5}{2} \\
& =0.25 \mathrm{~m}
\end{aligned}
$$

In this case the center of mass is shifted towards right from origin.

### 10.4.3 Cartesian Coordinates of the Center of Mass

Consider a regular trihedral system and a system of $n$ particles of masses $m_{1}, m_{2}, \ldots, m_{n}$, situated at point $P_{1}, P_{2}, \ldots, P_{n}$, whose position vectors relative to origin $O$ are $\vec{r}_{1}, \vec{r}_{2}, \ldots, \vec{r}_{n}$. Then the position vector of $P_{i}$ is

$$
\begin{equation*}
\vec{r}_{i}=x_{i} \hat{i}+y_{i} \hat{j}+z_{i} \hat{k} \tag{10.4.5}
\end{equation*}
$$

Suppose $C$ is a center of mass of the system and $\vec{r}=(\bar{x}, \bar{y}, \bar{z})$ be its position vector relative to $O$. Then

$$
\begin{align*}
& \bar{x}=\frac{\sum_{i=1}^{n} m_{i} x_{i}}{\sum_{i=1}^{n} m_{i}}  \tag{10.4.6}\\
& \bar{y}=\frac{\sum_{i=1}^{n} m_{i} y_{i}}{\sum_{i=1}^{n} m_{i}}  \tag{10.4.7}\\
& \bar{z}=\frac{\sum_{i=1}^{n} m_{i} z_{i}}{\sum_{i=1}^{n} m_{i}} \tag{10.4.8}
\end{align*}
$$

In case of plane coordinate system, $z$ - coordinate can be ignored considering $x y$ plane and in case of collinear coordinate system only one coordinate will be sufficient.

Example 10.4.2. A mass of 3 kg is located at $(0,0)$, a mass of 4 kg is located at (5,4) and a mass of 8 kg is located at $(-3,3)$. Find the coordinates of their centre of mass.

Solution: The given system has three masses and is two dimensional. Here $n=3$ Let

$$
\begin{aligned}
& m_{1}=3 \mathrm{~kg} \\
& m_{2}=5 \mathrm{~kg} \\
& m_{1}=8 \mathrm{~kg}
\end{aligned}
$$

Then

$$
\begin{aligned}
\sum_{i=1}^{3} m_{i} & =m_{1}+m_{2}+m_{3}=3+5+8 \\
& =16 \mathrm{~kg}
\end{aligned}
$$

Sum of moments of all masses about $x$ axis is

$$
\begin{aligned}
\sum_{i=1}^{3} m_{i} x_{i} & =m_{1} x_{1}+m_{2} x_{2}+m_{3} x_{3}=3(0)+4(5)+8(-3) \\
& =0+20-24=-4 \mathrm{~kg} \cdot \mathrm{~m}
\end{aligned}
$$

Sum of moments of all masses about $y$ axis is

$$
\begin{aligned}
\sum_{i=1}^{3} m_{i} y_{i} & =m_{1} y_{1}+m_{2} y_{2}+m_{3} y_{3}=3(0)+4(4)+8(3) \\
& =0+16+24=40 \mathrm{~kg} \cdot \mathrm{~m}
\end{aligned}
$$

using (10.4.6), the $x$ coordinate of center of mass are

$$
\begin{aligned}
\bar{x} & =\frac{\sum_{i=1}^{3} m_{i} x_{i}}{\sum_{i=1}^{3} m_{i}} \\
& =\frac{-4}{16}=-0.25 \mathrm{~m}
\end{aligned}
$$

using (10.4.7), the $y$ coordinate of center of mass are

$$
\begin{aligned}
\bar{y} & =\frac{\sum_{i=1}^{3} m_{i} y_{i}}{\sum_{i=1}^{3} m_{i}} \\
& =\frac{40}{16}=2.5 \mathrm{~m}
\end{aligned}
$$

Hence the centre of mass of the system is located at the point $(-0.25,2.5)$.

### 10.5 Centroid of a Body or System

For a uniform body, the center of mass is called centroid. In this case, if body or system has $n$ particles of equal masses $m_{1}=m_{2}=\ldots=m_{n}$, situated at point $P_{1}, P_{2}, \ldots, P_{n}$, then its center of mass or centroid is

$$
\begin{align*}
\vec{r} & =\frac{\sum_{i=1}^{n} \vec{r}_{i}}{n} \\
(\bar{x}, \bar{y}, \bar{z}) & =\left(\frac{\sum_{i=1}^{n} x_{i}}{n}, \frac{\sum_{i=1}^{n} y_{i}}{n}, \frac{\sum_{i=1}^{n} z_{i}}{n}\right) \tag{10.5.1}
\end{align*}
$$

### 10.5.1 Center of Mass of a System of $n$ Particles in Plane or Space

If $n$ mass points are not necessarily on a line but are in a plane or in space with position vectors $\vec{r}_{1}, \vec{r}_{2}, \ldots \vec{r}_{n}$, then its center of mass is

$$
\begin{equation*}
\vec{r}_{m}=\frac{m_{1} \vec{r}_{1}+m_{2} \vec{r}_{2}+\ldots m_{n} \vec{r}_{n}}{m_{1}+m_{2}+\ldots m_{n}} \tag{10.5.2}
\end{equation*}
$$

The center of mass of a system of two particles of masses $m_{1}, m_{2}$ is

$$
\begin{equation*}
\vec{r}_{m}=\frac{m_{1} \vec{r}_{1}+m_{2} \vec{r}_{2}}{m_{1}+m_{2}} \tag{10.5.3}
\end{equation*}
$$

But (10.5.3) gives the position vector of the point dividing the directed line segment from $\vec{r}_{1}$ to $\vec{r}_{2}$ in the ratio $m_{1}: m_{2}$. Hence the center of mass of two particles of masses $m_{1}, m_{2}$ divides the directed line segment from $\vec{r}_{1}$ to $\vec{r}_{2}$ in the ratio $m_{1}: m_{2}$.
In case of two equal masses $m_{1}=m_{2}=m$, the centroid is

$$
\begin{equation*}
\vec{r}_{m}=\frac{\vec{r}_{1}+\vec{r}_{2}}{2} \tag{10.5.4}
\end{equation*}
$$

Example 10.5.1. Consider three masses $2,3,4 \mathrm{~kg}$ are situated at $P_{1}, P_{2}, P_{3}$ having position vectors $\hat{i}, 2 \hat{i}-\hat{j}$ and $3 \hat{i}+\hat{j}-4 \hat{k}$. What will be their centroid and center of mass?

Solution The position vector of the centroid is

$$
\begin{aligned}
\vec{r}_{m} & =\frac{\hat{i}+2 \hat{i}-\hat{j}+3 \hat{i}+\hat{j}-4 \hat{k}}{3} \\
& =\frac{6 \hat{i}-4 \hat{k}}{3}
\end{aligned}
$$

And the position vector of the center of mass is

$$
\begin{aligned}
\vec{r}_{m} & =\frac{2(\hat{i})+3(2 \hat{i}-\hat{j})+4(3 \hat{i}+\hat{j}-4 \hat{k})}{2+3+4} \\
& =\frac{19 \hat{i}-\hat{j}-12 \hat{k}}{9}
\end{aligned}
$$

Hence the coordinates of the center of mass is $\left(\frac{19}{9},-\frac{1}{9},-\frac{4}{3}\right)$.

### 10.6 Center of Mass of a Continuous Distribution of Matter

The formulae obtained in the preceding article are applicable in the case of discrete systems only. If we are to find the center of mass of a continuous distribution of matter forming a body, integration methods explained below are to be employed. First of all consider one dimensional object.

### 10.6.1 Center of Mass of One Dimensional Object

Consider a body (a line or curve) of mass $m$ and length $l$ in one dimension. We subdivide the object into $n$ parts. Take a small element of length $d s$ with $r$ be its position vector (see Fig. 10.7), then mass of small element is

$$
d m=\rho d s
$$



Figure 10.7: Center of mass of 1 dimensional system

Where $\rho$ is the density of the body. Then the center of mass of the body is

$$
\begin{align*}
\bar{r} & =\frac{\int_{s} \vec{r} d m}{\int_{s} d m} \\
& =\frac{\int_{s} \vec{r} d m}{m} \tag{10.6.1}
\end{align*}
$$

Where the integration has to be performed over the entire body.
More clearly if one dimensional system is $x$ axis and the mass $m$ is from $x_{1}$ to $x_{2}$, then its total length is $l=x_{2}-x_{1}$. Consider small element $d m$ having length $d x$, having position vector $\vec{x}$ from the orion. Let $\rho$ be the its density at $\vec{r}$, then

$$
\rho=\frac{d m}{d x}
$$

or small element is

$$
d m=\rho d x
$$

then the center of mass of is

$$
\begin{align*}
\bar{x} & =\frac{\int_{x_{1}}^{x_{2}} \vec{x} \rho d x}{\int_{x_{1}}^{x_{2}} \rho d x} \\
& =\frac{1}{m} \int_{x_{1}}^{x_{2}} \vec{x} \rho d x \tag{10.6.2}
\end{align*}
$$

Where $m=\int_{x_{1}}^{x_{2}} \rho d x$ is the total mass of the body.
If the body is homogenous (has uniform distribution of mass), then the center of mass of is

$$
\begin{align*}
\bar{x} & =\frac{\int_{x_{1}}^{x_{2}} \vec{x} d x}{\int_{x_{1}}^{x_{2}} d x} \\
& =\frac{1}{l} \int_{x_{1}}^{x_{2}} \vec{x} d x \tag{10.6.3}
\end{align*}
$$

Example 10.6.1. Find center of mass of a uniform rod of mass $m \mathrm{~kg}$ of length a m .

Solution: A uniform rod of mass $m \mathrm{~kg}$ of length $a \mathrm{~m}$ is shown in Fig. 10.8 Consider a small element mass $d m$ of width $d x$ at a distance $x$ from origin $O$. Here


Figure 10.8: rod of length a

$$
\begin{aligned}
\vec{x} & =x \\
m & =m k g \\
l & =a \\
x_{1} & =0 \\
x_{2} & =a
\end{aligned}
$$

Since the rod is uniform, using (10.6.3) the center of mass of the rod is

$$
\begin{aligned}
\bar{x} & =\frac{1}{a} \int_{0}^{a} x d x \\
& =\frac{1}{a}\left[\frac{x^{2}}{2}\right]_{0}^{a} \\
& =\frac{1}{a} \frac{(a)^{2}}{2} \\
& =\frac{1}{2} a m
\end{aligned}
$$

Hence the center of mass of the rod is its mid point.

### 10.6.2 Center of Mass of Two Dimensional Object

Consider a lamina of mass $m$ and area $A$ in cartesian coordinate system. We subdivide the lamina into $n$ rectangles by drawing lines parallel to coordinate axes. Take a small rectangle of area $d s$ (see Fig. 10.9), then mass of small element is

$$
d m=\rho d s
$$

Let $r_{i}=\left(x_{i}, y_{i}\right)$ be any point in it. Then the center of mass of the lamina is

$$
\begin{align*}
\vec{r}_{m} & =\frac{\int_{s} \vec{r} d m}{\int_{s} d m} \\
& =\frac{\int_{s} \vec{r} d m}{m} \tag{10.6.4}
\end{align*}
$$

Where the integration has to be performed over the entire body.
More clearly if two dimensional system is in $x y$ plane and the mass $m$ has dimensions $x_{1} \leq x \leq x_{2}$ and $y_{1} \leq y \leq y_{2}$, then its total area is $A=\left(x_{2}-x_{1}\right)\left(y_{2}-y_{1}\right)$. Consider small element $d m$ having area $d A=d x d y$. Let $r_{i}=\left(x_{i}, y_{i}\right)$ be any point with density $\rho$ in it. Then

$$
\rho=\frac{d m}{d A}
$$

or small element is

$$
d m=\rho d A
$$



Figure 10.9: Center of mass of 2 dimensional system

Then the center of mass of the lamina is

$$
\begin{align*}
\bar{r} & =\frac{\int_{x_{1}}^{x_{2}} \int_{y_{1}}^{y_{2}} \vec{r} \rho d A}{x_{2} y_{2}} \rho d A \\
& =\frac{\int_{x_{1}}^{x_{1}} y_{1} \int_{y_{1}} \vec{r} \rho d A}{m}
\end{align*}
$$

Where $m=\int_{s} \rho d A$ is the total mass of the lamina.
If the body homogenous, then the center of mass of the lamina is

$$
\begin{align*}
& \vec{r}_{m}=\frac{\int_{x_{1}}^{x_{2}} \int_{y_{1}} y_{2} \vec{r} d A}{x_{2} y_{2}} \\
& \int_{x_{1}} \int_{y_{1}} d A \\
&=\frac{\int_{x_{1}} \int_{y_{1}} \vec{r} d A}{A} \tag{10.6.6}
\end{align*}
$$

Where $A=\int_{s} d A$ is the total area of the lamina.
Example 10.6.2. Find the center of mass of a uniform rectangular lamina.

## Solution

Let $O A B C$ be a rectangular lamina of mass $m$ and $O A$ (along $x$ axis) and $O B$ along $y$ axis

Let $O A=2 a$ and $O C=2 b$ Area of lamina is

$$
A=4 a b
$$

Consider a small element of surface area $d A=d x d y$ at a distance $y$ from $x$ axis Here


Figure 10.10: rectangular lamina

$$
\begin{aligned}
\vec{r} & =\langle x, y\rangle \\
m & =m k g \\
A & =4 a b \\
x_{1} & =0 \\
x_{2} & =2 a \\
y_{1} & =0 \\
y_{2} & =2 b
\end{aligned}
$$

Since lamina is uniform, using (10.6.6) the center of mass of the rod is

$$
\begin{aligned}
\vec{r}_{m} & =\frac{\int_{x_{1}}^{x_{2}} \int_{y_{1}}^{y_{2}} \vec{r} d A}{A} \\
\langle\bar{x}, \bar{y}\rangle & =\frac{\int_{0}^{2 a} \int_{0}^{2 b}\langle x, y\rangle d x d y}{4 a b} \\
& =\frac{1}{4 a b}\left\langle\left[\frac{x^{2}}{2}\right]_{0}^{2 a} \int_{0}^{2 b} d y,[x]_{0}^{2 a} \int_{0}^{2 b} y d y\right\rangle \\
& =\frac{1}{4 a b}\left\langle\left[2 a^{2}\right][y]_{0}^{2 b},(2 a)\left[\frac{y^{2}}{2}\right]_{0}^{2 b}\right\rangle \\
& =\frac{1}{4 a b}\left\langle\left[2 a^{2}\right](2 b),(2 a)\left[2 b^{2}\right]\right\rangle \\
& =\langle a, b\rangle
\end{aligned}
$$

Hence the center of mass or centroid of rectangular lamina is $(a, b)$

### 10.6.3 Center of Mass of Three Dimensional Object

Consider a three dimensional rigid body of mass $m$ and volume $V$ in a regular trihedral system. We subdivide the lamina into $n$ rectangular parallelepipeds by drawing planes parallel to coordinate axes. One such parallelepiped of volume $d s$ is shown in Fig. 10.11. The mass of small element is

$$
d m=\rho d s
$$

Let $r_{i}=\left(x_{i}, y_{i}, z_{i}\right)$ be any point within it. Then the center of mass of the body is

$$
\begin{align*}
\bar{r} & =\frac{\int_{s} \vec{r} d m}{\int_{S} d m} \\
& =\frac{\int_{s} \vec{r} d m}{m} \tag{10.6.7}
\end{align*}
$$

Where the integration has to be performed over the entire body, and $m=\int_{s} d m$ is the total mass of the body.
More clearly if three dimensional system is in $x y z$ space and the mass $m$ has dimensions $x_{1} \leq x \leq x_{2}, y_{1} \leq y \leq y_{2}$ and $z_{1} \leq z \leq z_{2}$, then its total volume is $V=$


Figure 10.11: Center of mass of 3 dimensional system
$\left(x_{2}-x_{1}\right)\left(y_{2}-y_{1}\right)\left(z_{2}-z_{1}\right)$. Consider small element $d m$ having volume $d V=d x d y d z$, Let $r_{i}=\left(x_{i}, y_{i}, z_{i}\right)$ be any point with density $\rho$ in it. Then

$$
\rho=\frac{d m}{d V}
$$

or small element is

$$
d m=\rho d V
$$

Then the center of mass of the body is

$$
\begin{align*}
\vec{r}_{m} & =\frac{\int_{x_{1}}^{x_{2}} \int_{y_{1}}^{y_{2}} \int_{z_{1}}^{z_{2}} \vec{r} \rho d V}{x_{2}} \int_{x_{1}}^{y_{2}} \int_{y_{1}}^{z_{2}} \int_{z_{1}} \rho d V \\
& =\frac{\int_{x_{1}}^{x_{2}} \int_{y_{1}}^{y_{2}} \int_{z_{1}} \vec{r} \rho d V}{m}
\end{align*}
$$

Where $m=\int_{s} \rho d V$ is the total mass of the body.
If the body homogenous, then the center of mass of the body is

$$
\begin{align*}
\vec{r}_{m} & =\frac{\int_{x_{1}}^{x_{2}} \int_{y_{1}}^{y_{2}} \int_{z_{1}}^{z_{2}} \vec{r} d V}{x_{2} y_{2}} z_{z_{2}} \int_{x_{1}} \int_{z_{1}} d V \\
& =\frac{\int_{x_{1}} \int_{y_{1}} \int_{z_{1}}^{z_{2}} \vec{r} d V}{V}
\end{align*}
$$

Where $V=\int_{s} d m$ is the total volume of the body.

Example 10.6.3. Find the center of mass of a uniform cube.

## Solution

Consider a uniform cube of mass $m$ with $O A$ along $x$ axis, $O B$ along $y$ axis and $O C$ along $z$ axis. Let $O A=a, O B=a$ and $O C=a$ Volume of the cube is

$$
V=a^{3}
$$

Consider a small volume $d V=d x d y d z$ at a distance $r$ from origin $O$. Here


Figure 10.12: A cube with edges along coordinate axis.

$$
\begin{aligned}
\vec{r} & =\langle x, y, z\rangle \\
m & =m k g \\
V & =a^{3} \\
x_{1} & =0 \\
x_{2} & =a \\
y_{1} & =0 \\
y_{2} & =a \\
z_{1} & =0 \\
z_{2} & =a
\end{aligned}
$$

Since cube is uniform, using (10.6.9) the center of mass of the rod is

$$
\begin{aligned}
\vec{r}_{m} & =\frac{\int_{x_{1}}^{x_{2}} \int_{y_{1}}^{y_{2}} \int_{z_{1}}^{z_{2}} \vec{r} d V}{V} \\
\langle\bar{x}, \bar{y}\rangle & =\frac{\int_{0}^{a} \int_{0}^{a} \int_{0}^{a}\langle x, y, z\rangle d x d y d z}{a^{3}} \\
& =\frac{1}{a^{3}}\left\langle\left[\frac{x^{2}}{2}\right]_{0}^{a} \int_{0}^{a} \int_{0}^{a} d y d z,[x]_{0}^{a} \int_{0}^{a} \int_{0}^{a} y d y d z,[x]_{0}^{a} \int_{0}^{a} \int_{0}^{a} z d y d z\right\rangle \\
& =\frac{1}{a^{3}}\left\langle\left[\frac{a^{2}}{2}\right][y]_{0}^{a} \int_{0}^{a} d z,(a)\left[\frac{y^{2}}{2}\right]_{0}^{a} \int_{0}^{a} d z, a[y]_{0}^{a} \int_{0}^{a} z d z\right\rangle \\
& =\frac{1}{a^{3}}\left\langle\frac{1}{2} a^{3}[z]_{0}^{a}, \frac{1}{2} a^{3}[z]_{0}^{a}, a^{2}\left[\frac{z^{2}}{2}\right]_{0}^{a}\right\rangle \\
& =\frac{1}{a^{3}}\left\langle\frac{1}{2} a^{4}, \frac{1}{2} a^{4}, \frac{1}{2} a^{4}\right\rangle \\
& =\left\langle\frac{a}{2}, \frac{a}{2}, \frac{a}{2}\right\rangle
\end{aligned}
$$

Hence the center of mass or centroid of a uniform cube is $\left(\frac{a}{2}, \frac{a}{2}, \frac{a}{2}\right)$

### 10.7 Symmetry and Center of Mass

If a body possesses some sort of symmetry, then it is too much easy to compute the position of its center of mass. We first explain the concept of symmetry and shall therefore show how to use this concept in determining the center of mass of a body.

### 10.7.1 Symmetry with respect to a Point

A body is said to be symmetric with respect to a point $O$ if and only if corresponding to every point $P$ of the body there exist a point $P^{\prime}$ in the body such that $O$ is the middle point of the line segment $P P^{\prime}$ and $\rho(P)=\rho\left(P^{\prime}\right)$, i.e., the density of the body at the points $P$ and $P^{\prime}$ is the same. Such symmetry is called central symmetry and the point $O$ is called the center of symmetry.
It follows that a uniform body is symmetric with respect to origin $O$ if and only if for every point $P(x, y, z)$ of the body there exist a point $P^{\prime}(-x,-y,-z)$ in the body such that $O$ is the middle point of the line segment $P P^{\prime}$ and $\rho(P)=\rho\left(P^{\prime}\right)$.
Examples

1. A uniform rod is symmetric with respect to its mid point, hence its mid point is center
of mass as shown in example 10.6.1.
2. A uniform circular lamina is symmetric with respect to its geometric center.
3. A uniform solid sphere or spherical shell is symmetric with respect to its geometric center.

### 10.7.2 Symmetry with respect to a Line

A body is said to be symmetric with respect to a line $l$ if and only if corresponding to every point $P$ of the body there exist a point $P^{\prime}$ in the body such that $l$ bisects the line segment $P P^{\prime}$ perpendicularly and $\rho(P)=\rho\left(P^{\prime}\right)$. Such symmetry is called axial symmetry and the line $l$ is called the axis of symmetry.
In particular, a uniform body is symmetric with respect to the $z$ axis if and only if for every point $P(x, y, z)$ of the body there exist a point $P^{\prime}(-x,-y, z)$ in the body such that $z$ axis is the right bisector of the line segment $P P^{\prime}$.
Examples

1. A uniform circular cylinder is symmetric with respect to its axis.
2. A uniform solid sphere or spherical shell is symmetric with respect to its axis.

A uniform lamina is symmetric with respect to $x$ axis if and only if for every point $P(x, y)$ of the body there exist a point $P^{\prime}(x,-y)$ of the lamina. In this case its center is the center of mass as shown in example 10.6.3.

### 10.7.3 Symmetry with respect to a Plane

A body is said to be symmetric with respect to a plane p if and only if corresponding to every point $P$ of the body there exist a point $P^{\prime}$ in the body such that p bisects the line segment $P P^{\prime}$ perpendicularly and $\rho(P)=\rho\left(P^{\prime}\right)$. Such symmetry is called axial symmetry and the line $l$ is called the axis of symmetry.
In particular, a uniform body is symmetric with respect to the $x y$ plane if and only if for every point $P(x, y, z)$ of the body there exist a point $P^{\prime}(x, y,-z)$ in the body such that $x y$ plane bisects of the line segment $P P^{\prime}$.

## Examples

1. A uniform solid or hollow ellipsoid is symmetric with respect to each of its principal planes.
2. A uniform solid sphere or spherical shell is symmetric with respect to each of its diametral plane (planes passing through the center).

### 10.8 Centroid of a Plane Region

The centroid $C$ is a point which defines the geometric center of an object. The centroid coincides with the center of mass or the center of gravity only if the material of the body is
homogenous (density or specific weight is constant throughout the body). If an object has an axis of symmetry, then the centroid of object lies on that axis.
Consider the region bounded by the curve $y=f(x)$, the $x-a x i s$, the line $x=a$ and the line $x=b$ as shown in Fig. 10.13. Let the density of the region is 1 . Then by (10.1.4) the


Figure 10.13: Plane region.
total mass of the system is the total area of the region

$$
m=A
$$

For uniform distribution of mass the area under the curve is

$$
A=\int_{a}^{b} f(x) d x
$$

Hence the mass of the region is

$$
m=\int_{a}^{b} f(x) d x
$$

As area under the curve is obtained by using approximation method. In this method the interval $[a, b]$ is divided into $n$ subintervals of length $h$. Then $h$ is

$$
\begin{equation*}
h=\frac{b-a}{n} \tag{10.8.1}
\end{equation*}
$$

Let $x_{k}, k=1,2, \ldots n$ be the endpoints of each subinterval. Next construct a rectangle on each subinterval and find its area to approximate the area under the curve. On interval $x_{k-1} \leq x \leq x_{k}$, the rectangle has height $f\left(x_{k}\right)$ and width $x_{k}-x_{k-1}=h$. Its area is its mass

$$
d A=h f\left(x_{k}\right)=d m
$$

And its center of mass is its geometric center, given by

$$
C_{I}=\left(x_{k}-\frac{h}{2}, \frac{1}{2} f\left(x_{k}\right)\right)
$$

The mass moment about $y$-axix of this rectangle is

$$
d M_{y}=h f\left(x_{k}\right)\left(x_{k}-\frac{h}{2}\right)
$$

We can imagine that center of mass of each rectangle is its geometric center. The mass moment about $y$-axix of all $n$ rectangles is

$$
M_{x}=\sum_{k=1}^{n}\left[h f\left(x_{k}\right)\left(x_{k}-\frac{h}{2}\right)\right]
$$

Similarly the mass moment about $x$-axix of all $n$ rectangles is

$$
M_{y}=\sum_{k=1}^{n}\left[h f\left(x_{k}\right) \frac{1}{2} f\left(x_{k}\right)\right]
$$

Taking limit $n \rightarrow \infty$, the sum of areas of all rectangles approaches to true area under the curve, and in the same way the moments about $y$-axix and $x$-axix of the rectangles approaches to true moments of area under the curve. As $n \rightarrow \infty$, by (10.8.1) $h \rightarrow 0$. Hence $x_{k}-\frac{h}{2} \rightarrow x_{k}$. Thus for a plane region bounded by $y=f(x)$, the $x-a x i s$, the line $x=a$ and the line $x=b$, the moments about $x$-axis is

$$
\begin{align*}
M_{x} & =\lim _{n \rightarrow \infty} \sum_{k=1}^{n}\left[h f\left(x_{k}\right) \frac{1}{2} f\left(x_{k}\right)\right] \\
& =\int_{a}^{b} x f(x) d x \tag{10.8.2}
\end{align*}
$$

and $y$-axis is

$$
\begin{align*}
M_{y} & =\lim _{n \rightarrow \infty} \sum_{k=1}^{n}\left[h f\left(x_{k}\right)\left(x_{k}-\frac{h}{2}\right)\right] \\
& =\int_{a}^{b} \frac{1}{2}[f(x)]^{2} d x \tag{10.8.3}
\end{align*}
$$

Hence the $x$ coordinate of center of mass is

$$
\begin{equation*}
\bar{x}=\frac{M_{x}}{m}=\frac{\int_{a}^{b} x f(x) d x}{\int_{a}^{b} f(x) d x} \tag{10.8.4}
\end{equation*}
$$

the $y$ coordinate of center of mass is

$$
\begin{equation*}
\bar{y}=\frac{M_{y}}{m}=\frac{\int_{a}^{b} \frac{1}{2}[f(x)]^{2} d x}{\int_{a}^{b} f(x) d x} \tag{10.8.5}
\end{equation*}
$$

Example 10.8.1. Find the center of mass of a plane region bounded by the curve $y=\sqrt{x}$, the $x$-axis, the line $x=1$ and the line $x=3$.

## Solution

The given data is

$$
\begin{aligned}
f(x) & =\sqrt{x}=x^{\frac{1}{2}} \\
a & =1 \\
b & =3
\end{aligned}
$$

The plane region bounded by the curve $y=\sqrt{x}$, the $x$-axis, the line $x=1$ and the line $x=3$ is shown in Fig. 10.14. The area of the region is


Figure 10.14: Plane region.

$$
\begin{aligned}
A & =\int_{a}^{b} f(x) d x \\
& =\int_{1}^{3}(x)^{\frac{1}{2}} d x \\
& =\left[\frac{(x)^{\frac{3}{2}}}{\frac{3}{2}}\right]_{1}^{3} \\
& =\frac{2}{3}\left[(3)^{\frac{3}{2}}-1\right] \\
& =2.8 \text { units }^{2}
\end{aligned}
$$

Using (10.8.2) the mass moments about $x-$ axis is

$$
\begin{aligned}
M_{x} & =\int_{a}^{b} x f(x) d x \\
& =\int_{1}^{3} x(x)^{\frac{1}{2}} d x=\int_{1}^{3}(x)^{\frac{3}{2}} d x \\
& =\left[\frac{(x)^{\frac{5}{2}}}{\frac{5}{2}}\right]_{1}^{3} \\
& =\frac{2}{5}\left[(3)^{\frac{5}{2}}-1\right] \\
& =5.8 \text { units }^{3}
\end{aligned}
$$

Using (10.8.3) the mass moments about $y$-axis is

$$
\begin{aligned}
M_{y} & =\int_{a}^{b} \frac{1}{2}[f(x)]^{2} d x \\
& =\int_{1}^{3} \frac{1}{2}[\sqrt{x}]^{2} d x \\
& =\int_{1}^{3} \frac{1}{2} x d x \\
& =\frac{1}{2}\left[\frac{x^{2}}{2}\right]_{1}^{3} \\
& =2 \text { units }^{3}
\end{aligned}
$$

Using (10.8.4) the $x$ coordinate of center of mass is

$$
\begin{aligned}
\bar{x} & =\frac{M_{x}}{m}=\frac{\int_{a}^{b} x f(x) d x}{\int_{a}^{b} f(x) d x} \\
& =\frac{5.8}{2.8} \\
& =2.1 \text { units }
\end{aligned}
$$

Using (10.8.5) the $y$ coordinate of center of mass is

$$
\begin{aligned}
\bar{y} & =\frac{M_{y}}{m}=\frac{\int_{a}^{b} \frac{1}{2}[f(x)]^{2} d x}{\int_{a}^{b} f(x) d x} \\
& =\frac{2}{2.8} \\
& =0.7 \text { units }
\end{aligned}
$$

Hence the center of mass is $(2.1,0.7)$ unit.

## Exercises

1. The density of glass of mass 10 kg is $3140 \mathrm{~kg} / \mathrm{m}^{3}$. Determine its volume.
2. A mass of 5 kg is located at $(1,0,-1)$, a mass of 4 kg is located at $(2,5,4)$ and a mass of 2 kg is located at $(4,-3,1)$. Find the coordinates of their centre of mass.
3. A square of side $a$ has particles of masses $1 \mathrm{~kg}, 2 \mathrm{~kg}, 3 \mathrm{~kg}, 4 \mathrm{~kg}$ at its vertices. Find the center of mass of the system.
4. Find the center of mass of a uniform rectangular lamina whose center is the origin of the coordinate system.
5. Find the center of mass of a uniform triangular lamina.
6. Find the center of mass of a uniform circular disc whose center
(a) is the origin of the coordinate system.
(b) lies on $x$ axis of the coordinate system and passing through the origin.
(c) lies on $y$ axis of the coordinate system and passing through the origin.
7. Find the center of mass of a uniform elliptic disc whose center lies on the origin.
8. Find the center of mass of a plane region bounded by
(a) lines $y=2 x, y=-2 x$ and $x=2$.
(b) the curve $y=\sqrt{x}$, the $x$-axis and the line $x=4$.
(c) the curve $y=x^{2}$, the $x$-axis and the lines $x=1, x=2$.

## Chapter 11

## Moments and Products of Inertia

Inertia The tendency of a body to preserve its state of rest or uniform motion unless acted upon by an external force.

### 11.1 Moments of Inertia

The moment of inertia plays much the same role in rotational dynamics as mass does in linear dynamics. In classical mechanics, moment of inertia, also called mass moment of inertia, rotational inertia, polar moment of inertia of mass, or the angular mass.
It is the inertia of a rotating body with respect to its rotation. i.e. a quantity that measures the resistance of an object to changes to its rotation. The symbols $I$ and sometimes $J$ are usually used to refer it.

### 11.1.1 Moments of Inertia of a Particle

Moment of inertia of a particle of mass $m$ about line $l$ or $A B$ axis is defined as

$$
\begin{equation*}
I=m d^{2} \tag{11.1.1}
\end{equation*}
$$

Where $I$ stands for moment of inertia and $d$ is the perpendicular distance of the particle of mass $m$ from the line $l$ or $A B$ axis (see Fig. 11.1). In $S I$ its measuring unit is $k g \cdot \mathrm{~m}^{2}$. For continuous distribution of mass the moment of inertia is

$$
\begin{equation*}
I=\int r^{2} d m \tag{11.1.2}
\end{equation*}
$$

Where $r$ is the distance of the mass element $d m$ from the given line or axis and the integration is to be performed for entire body.
In this chapter, the body under consideration has uniform distribution of mass.
The moment of inertia describes the relationship between angular momentum and angular


Figure 11.1: Moment of inertia of a single particle
velocity, torque and angular acceleration, and several other quantities.

### 11.1.2 Moments of Inertia of a System of Particles

The moment of inertia of a system of particles of masses $m_{1}, m_{2}, \ldots, m_{n}$ about line $l$ or $A B$ axis is defined as

$$
\begin{align*}
I & =m_{1} d_{1}^{2}+m_{2} d_{2}^{2}+\ldots+m_{n} d_{n}^{2} \\
& =\sum_{i=1}^{n} m_{i} d_{i}^{2} \tag{11.1.3}
\end{align*}
$$

Where $d_{i}$ is the distance of the particle of mass $m_{i}$ from the line $l$ or $A B$ axis (see Fig. 11.2).

### 11.2 Moment of Inertia of a Mass with Continuous Distribution

The formulae obtained in the preceding article are applicable in the case of discrete systems only. If we are to find the moment of inertia of a continuous distribution of matter forming a body, integration methods explained below are to be employed. First of all consider one dimensional object.


Figure 11.2: Moment of inertia of a system of particles

### 11.2.1 Moment of Inertia of One Dimensional Particle

Consider a body (a line or curve) of mass $m$ in one dimension. Take a small element of length $d s$ (see Fig. 11.3), then mass of small element,

$$
d m=\rho d s
$$

Let $A B$ be the axis of rotation, then moment of inertia of small element $d m$ is

$$
d I=d m d^{2}
$$

M.I. of body about $A B$ axis is

$$
\begin{align*}
I & =\int_{s} d m d^{2} \\
& =\int_{s} \rho d^{2} d s \tag{11.2.1}
\end{align*}
$$

More clearly if one dimensional system is $x$ axis and the mass $m$ is from $x_{1}$ to $x_{2}$, then its total length is $l=x_{2}-x_{1}$. Consider small element $d m$ having length $d x$, at a distance $d=x$ from the axis of rotation. Since the body has uniform distribution of mass, then

$$
\rho=\frac{\text { mass }_{\text {total }}}{\text { length }_{\text {total }}}=\frac{d m}{d x}
$$

or small element is

$$
d m=\frac{m}{x_{2}-x_{1}} d x
$$



Figure 11.3: Moment of inertia of 1 dimensional system
then moment of inertia of small element $d m$ is

$$
\begin{align*}
d I & =d m d^{2} \\
& =\frac{m}{x_{2}-x_{1}} x^{2} d x \tag{11.2.2}
\end{align*}
$$

M.I. of body about $A B$ axis is

$$
\begin{equation*}
I=\frac{m}{x_{2}-x_{1}} \int_{x_{1}}^{x_{2}} x^{2} d x \tag{11.2.3}
\end{equation*}
$$

### 11.2.2 Moment of Inertia of Two Dimensional Particle

Consider a body (a plane curve) of mass $m$ in two dimension. Take a small element area $d s$ (see Fig. 11.4), then mass of small element,

$$
d m=\rho d s
$$

Let $A B$ be the axis of rotation, then moment of inertia of small element $d m$ is

$$
d I=d m d^{2}
$$

M.I. of body about $A B$ axis is

$$
\begin{align*}
I & =\iint_{s} d m d^{2} \\
& =\iint_{s} \rho d^{2} d s \tag{11.2.4}
\end{align*}
$$



Figure 11.4: Moment of inertia of 2 dimensional system

More clearly if two dimensional system is $x y$ plane and the mass $m$ has dimensions $x_{1} \leq$ $x \leq x_{2}$ and $y_{1} \leq y \leq y_{2}$, then its total area is $A=\left(x_{2}-x_{1}\right)\left(y_{2}-y_{1}\right)$. Consider small element $d m$ having area $d A=d x d y$, at a distance $d$ from the axis of rotation. Since the body has uniform distribution of mass, then

$$
\rho=\frac{\text { mass }_{\text {total }}}{\text { Area }}=\frac{d m}{d A}
$$

or small element is

$$
d m=\frac{m}{A} d A
$$

then moment of inertia of small element $d m$ about the axis of rotation is

$$
\begin{align*}
d I & =d m d^{2} \\
& =\frac{m}{A} d^{2} d A \tag{11.2.5}
\end{align*}
$$

M.I. of body about $A B$ axis is

$$
\begin{equation*}
I=\frac{m}{A} \int_{x_{1}}^{x_{2}} \int_{y_{1}}^{y_{2}} d^{2} d x d y \tag{11.2.6}
\end{equation*}
$$

### 11.3 Moment of Inertia of Three Dimensional Particle

Consider a body (a surface) of mass $m$ in three dimension. Take a small element of volume $d s$ (see Fig. 11.5), then mass of small element,

$$
d m=\rho d s
$$

Let $A B$ be the axis of rotation, then moment of inertia of small element $d m$ is

$$
d I=d m d^{2}
$$

M.I. of body about $A B$ axis is

$$
\begin{align*}
I & =\iiint_{s} d m d^{2} \\
& =\iiint_{V} \rho d^{2} d s \tag{11.3.1}
\end{align*}
$$

More clearly if three dimensional system is $x y z$ space and the mass $m$ has dimensions $x_{1} \leq$


Figure 11.5: Moment of inertia of 3 dimensional system
$x \leq x_{2}, y_{1} \leq y \leq y_{2}$ and $z_{1} \leq y \leq z_{2}$, then its total volume is $V=\left(x_{2}-x_{1}\right)\left(y_{2}-y_{1}\right)\left(z_{2}-z_{1}\right)$. Consider small element $d m$ having volume $d V=d x d y d z$, at a distance $d$ from the axis of rotation. Since the body has uniform distribution of mass, then

$$
\rho=\frac{\text { mass }_{\text {total }}}{\text { Volume }_{\text {total }}}=\frac{d m}{d V}
$$

or small element is

$$
d m=\frac{m}{V} d V
$$

then moment of inertia of small element $d m$ about the axis of rotation is

$$
\begin{align*}
d I & =d m d^{2} \\
& =\frac{m}{V} d^{2} d V \tag{11.3.2}
\end{align*}
$$

M.I. of body about $A B$ axis is

$$
\begin{equation*}
I=\frac{m}{V} \int_{x_{1}}^{x_{2}} \int_{y_{1}}^{y_{2}} \int_{z_{1}}^{z_{2}} d^{2} d x d y d z \tag{11.3.3}
\end{equation*}
$$

### 11.4 Radius of Gyration

Radius of gyration of a body about an axis, is the effective distance (perpendicular distance) of point $P$ from its axis where whole mass can be assumed to be concentrated so that $I$ remains the same.
For a system of mass $M=\sum_{i=1}^{n} m_{i}$ and moment of inertia $I$ about an axis, the radius of Gyration denoted by $K$ and is defined as

$$
\begin{align*}
K^{2} & =\frac{I}{M} \\
& =\frac{\sum_{i=1}^{n} m_{i} r_{i}^{2}}{\sum_{i=1}^{n} m_{i}} \tag{11.4.1}
\end{align*}
$$

where $r_{i}$ the perpendicular distances of mass $m_{i}$ from axis of rotation. When the mass has


Figure 11.6: Radius of gyration
equal distribution i.e $M=n m$

$$
\begin{align*}
K^{2} & =\frac{\sum_{i=1}^{n} m r_{i}^{2}}{\sum_{i=1}^{n} m_{i}} \\
& =\frac{\left(m r_{1}^{2}+m r_{2}^{2}+\ldots+m r_{n}^{2}\right)}{n m} \\
& =\frac{n m\left(r_{1}^{2}+r_{2}^{2}+\ldots+r_{n}^{2}\right)}{n m} \\
& =\sum_{i=1}^{n} r_{i}^{2} \tag{11.4.2}
\end{align*}
$$

and the radius of gyration is

$$
K=\sqrt{\sum_{i=1}^{n} r_{i}^{2}}
$$

When a system consists of a single particle then the radius of Gyration about a line or axis


Figure 11.7: Radius of gyration
is simply the distance of the particle from the line or axis.

$$
\begin{align*}
K & =\sqrt{\frac{I}{m}}  \tag{11.4.3}\\
K^{2} & =\frac{I}{m} \\
& =\frac{m r^{2}}{m}
\end{align*}
$$

or

$$
\begin{equation*}
K=r \tag{11.4.4}
\end{equation*}
$$

### 11.5 Moment of Inertia about Coordinate Axes

### 11.5.1 Moment of Inertia of a Single Particle

Consider a particle $P$ of masses $m$ in a regular trihedral system $O X Y Z$. Its perpendicular distance from $O Z$ axis is

$$
\begin{align*}
d & =P R=O Q \\
& =\sqrt{x^{2}+y^{2}} \tag{11.5.1}
\end{align*}
$$

Then its moment of inertia about $O Z$ axis is


Figure 11.8: M.I of of a single particle

$$
\begin{align*}
I_{O Z} & =m d^{2} \\
& =m\left(x^{2}+y^{2}\right) \tag{11.5.2}
\end{align*}
$$

Similarly about $O X$ axis

$$
\begin{equation*}
I_{O X}=m\left(y^{2}+z^{2}\right) \tag{11.5.3}
\end{equation*}
$$

and $O Y$ axis

$$
\begin{equation*}
I_{O Y}=m\left(x^{2}+z^{2}\right) \tag{11.5.4}
\end{equation*}
$$

### 11.5.2 Moment of Inertia of a System of $n$ Particles

Consider a system of particles $P_{1}\left(x_{1}, y_{1}, z_{2}\right), P_{2}\left(x_{2}, y_{2}, z_{2}\right), \ldots P_{n}\left(x_{n}, y_{n}, z_{n}\right)$ with masses $m_{1}, m_{2}, \ldots, m_{n}$ respectively in a regular trihedral system $O X Y Z$. The $i t h$ particle of mass $m_{i}$ is at point $P_{i}$ having a distance $d_{i}$ from $z$ axis. Then its moment of inertia about the axis $O Z$ is


Figure 11.9: M.I of of a system of particles

$$
\begin{align*}
d I_{O Z} & =m_{i} d_{i}^{2} \\
& =m_{i}\left(x_{i}^{2}+y_{i}^{2}\right) \tag{11.5.5}
\end{align*}
$$

and the moment of inertia of the rigid body about the $z$ axis is

$$
\begin{equation*}
C=I_{O Z}=I_{z z}=\sum_{i=1}^{n} m_{i}\left(x_{i}^{2}+y_{i}^{2}\right) \tag{11.5.6}
\end{equation*}
$$

about $O X$ axis is

$$
\begin{equation*}
A=I_{O X}=I_{x x}=\sum_{i=1}^{n} m_{i}\left(y_{i}^{2}+z_{i}^{2}\right) \tag{11.5.7}
\end{equation*}
$$

and about $O Y$ axis is

$$
\begin{equation*}
B=I_{O Y}=I_{y y}=\sum_{i=1}^{n} m_{i}\left(x_{i}^{2}+z_{i}^{2}\right) \tag{11.5.8}
\end{equation*}
$$

### 11.6 Product of Inertia

The quantities

$$
\begin{align*}
D & =\sum_{i=1}^{n} m_{i} y_{i} z_{i}  \tag{11.6.1}\\
E & =\sum_{i=1}^{n} m_{i} z_{i} x_{i}  \tag{11.6.2}\\
F & =\sum_{i=1}^{n} m_{i} x_{i} y_{i} \tag{11.6.3}
\end{align*}
$$

are called products of inertia w.r.t. pair of axes (oy,oz), $(o z, o x)$ and (ox,oy) respectively. They are a measure of the imbalance in the mass distribution. They can be positive, negative, or zero.

### 11.6.1 Product of Inertia for a System of Continuous Distribution of Mass

The M.I. about $x$-axis, $y$-axis and $z$-axis are defined as under

$$
\begin{align*}
A & =\iiint_{V} \rho\left(y^{2}+z^{2}\right) d V  \tag{11.6.4}\\
B & =\iiint_{V} \rho\left(z^{2}+x^{2}\right) d V  \tag{11.6.5}\\
C & =\iiint_{V} \rho\left(x^{2}+y^{2}\right) d V \tag{11.6.6}
\end{align*}
$$

Similarly, the products of inertia w.r.t. pair of axes (oy,oz), (oz,ox) and (ox,oy) respectively are as under

$$
\begin{align*}
D & =\iiint_{V} \rho y z d V  \tag{11.6.7}\\
E & =\iiint_{V} \rho z x d V  \tag{11.6.8}\\
F & =\iiint_{V} \rho x y d V \tag{11.6.9}
\end{align*}
$$

For laminas in $x y$ plane, we put $z=0$, then

$$
\left\{\begin{align*}
A & =\sum_{i=1}^{n} m_{i} y_{i}^{2}  \tag{11.6.10}\\
B & =\sum_{i=1}^{n} m_{i} x_{i}^{2} \\
C & =\sum_{i=1}^{n} m_{i}\left(x_{i}^{2}+y_{i}^{2}\right)
\end{align*}\right.
$$

Similarly, the products of inertia w.r.t. pair of axes (oy,oz), (oz,ox) and (ox,oy) respectively are as under

$$
\left\{\begin{array}{l}
D=0  \tag{11.6.11}\\
E=0 \\
F=\sum_{i=1}^{n} m_{i} x_{i} y_{i}
\end{array}\right.
$$

and for continuous distribution of mass

$$
\begin{aligned}
A & =\iint_{S} \rho y^{2} d A \\
B & =\iint_{S} \rho x^{2} d A \\
C & =\iint_{S} \rho\left(x^{2}+y^{2}\right) d A
\end{aligned}
$$

Similarly, the products of inertia w.r.t. pair of axes (oy,oz), (oz,ox) and (ox,oy) respectively are as under

$$
\begin{aligned}
D & =0 \\
E & =0 \\
F & =\iint_{S} \rho x y d x d y
\end{aligned}
$$

### 11.7 Parallel Axis Theorem

The parallel axis theorem states that the moment of inertia of a body about any axis is equal to the moment of inertia about a parallel axis through the center of mass, plus the mass of the body $\times$ the square of the distance between the two axes.
Proof: Consider a rigid body in a regular trihedral system. Let $C$ be the center of mass and $M$ be the total mass of the body. i.e.

$$
\begin{equation*}
M=\sum_{i=1}^{n} m_{i} \tag{11.7.1}
\end{equation*}
$$

Let $m_{i}$ be the mass of the $i t h$ particle. Then for its M.I about $z$-axis, we consider another axis $P C$ parallel to it. Let $d$ be the distance between these two parallel axes. Let $\vec{r}_{i}$ and $\vec{a}_{i}$ be the position vectors of the particle $P$ of mass $m_{i}$ relative to $O$ and $C$ respectively. Let $r_{c}$ be the position vector of point $C$ relative to $O$. Then

$$
\begin{equation*}
\vec{r}_{i}=\vec{r}_{C}+\vec{a}_{i} \tag{11.7.2}
\end{equation*}
$$

The moment of inertia of mass $m_{i}$ about $z$-axis is


Figure 11.10: Parallel axis theorem

$$
I_{z z}=m_{i} r_{i}^{2}
$$

And the moment of inertia of the body about $z$-axis is

$$
\begin{aligned}
I_{z z} & =\sum_{i=1}^{n} m_{i} r_{i}^{2} \\
& =\sum_{i=1}^{n} m_{i}\left(\overrightarrow{r_{i}} \cdot \overrightarrow{r_{i}}\right)
\end{aligned}
$$

using (11.7.2) we have

$$
\begin{align*}
I_{z z} & =\sum_{i=1}^{n} m_{i}\left(\overrightarrow{r_{C}}+\overrightarrow{a_{i}}\right) \cdot\left(\overrightarrow{r_{C}}+\overrightarrow{a_{i}}\right) \\
& =\sum_{i=1}^{n} m_{i}\left(r_{C}^{2}+2 r_{C} a_{i}+a_{i}^{2}\right) \\
& =r_{C}^{2} \sum_{i=1}^{n} m_{i}+2 r_{C} \sum_{i=1}^{n} m_{i} a_{i}+\sum_{i=1}^{n} m_{i} a_{i}^{2} \tag{11.7.3}
\end{align*}
$$

From Fig. 11.10, we have $r_{C}^{2}=d^{2}$. Also the term $m_{i} a_{i}$ represents moment of a force about a point lying on its line of action. So the term $m_{i} a_{i}=0$. And the term $\sum_{i=1}^{n} m_{i} a_{i}^{2}$ represents M.I of $m_{i}$ about $P C$ axis. Using above results along with (11.7.1), (11.7.3) can be written as

$$
\begin{equation*}
I_{z z}=d^{2} M+I_{P C} \tag{11.7.4}
\end{equation*}
$$

### 11.8 Perpendicular Axis Theorem

For a $2 D$ object (a thin plate) the moment of inertia about a perpendicular axis equals the sum of the moments of inertia about any two axes at right angles through the same point in the plane. It states that the moment of inertia of the lamina about the $z$-axis is equal to the sum of the moments of inertia about the $x-$ and $y$-axes.

$$
I_{z z}=I_{x x}+I_{y y}
$$

Proof: Consider a regular trihedral system. Let $O x, O y$ are the axes in the $x y$ plane of lamina and $O z$ be the normal axis, Let a particle of mass $m$, lying at point $P$ in $x y$ plane. Then its distance from $x$ axis is $x$ and from y axis is $y$. Then its M.I. about $O x$ and $O y$ axes are respectively:

$$
\begin{align*}
I_{x x} & =m x^{2}  \tag{11.8.1}\\
I_{y y} & =m y^{2} \tag{11.8.2}
\end{align*}
$$

Let $r$ be its distance from $o z$ axis i.e. perpendicular axis(see Fig 11.11). Then the M.I. about $O z$ axis is


Figure 11.11: M.I. about perpendicular axis

$$
\begin{align*}
I_{z z} & =m r^{2} \\
& =m\left(x^{2}+y^{2}\right) \\
& =m x^{2}+m y^{2} \tag{11.8.3}
\end{align*}
$$

Using (11.8.1) and (11.8.2), (11.8.3) becomes

$$
I_{z z}=I_{x x}+I_{y y}
$$

Similarly for a system of $n$ particles, the M.I. about perpendicular axis, i.e., oz axis is

$$
\begin{aligned}
I_{z z} & =\sum_{i} m_{i} r_{i}^{2} \\
& =\sum_{i} m_{i}\left(x_{i}^{2}+y_{i}^{2}\right) \\
& =I_{x x}+I_{y y}
\end{aligned}
$$

### 11.8.1 Converse of Perpendicular Axis Theorem

It states that the moment of inertia of an object about the $z$-axis is equal to the sum of the moments of inertia about the $x-$ and $y$-axes i.e.

$$
\begin{equation*}
I_{z z}=I_{x x}+I_{y y} \tag{11.8.4}
\end{equation*}
$$

then the object is a plane lamina.
Proof: Consider a particle $P$ of masses $m$ in a regular trihedral system $O X Y Z$. Its perpendicular distance from $O Z$ axis is

$$
\begin{align*}
d & =P R=O Q \\
& =\sqrt{x^{2}+y^{2}} \tag{11.8.5}
\end{align*}
$$

Then its moment of inertia about $O Z$ axis is

$$
\begin{align*}
I_{z z} & =m d^{2} \\
& =m\left(x^{2}+y^{2}\right) \tag{11.8.6}
\end{align*}
$$

Similarly about $O X$ axis

$$
\begin{equation*}
I_{x x}=m\left(y^{2}+z^{2}\right) \tag{11.8.7}
\end{equation*}
$$

and $O Y$ axis

$$
\begin{equation*}
I_{y y}=m\left(x^{2}+z^{2}\right) \tag{11.8.8}
\end{equation*}
$$

Using (11.8.5), (11.8.5) and (11.8.5) in (11.8.4), we have

$$
\begin{aligned}
m x^{2}+m y^{2} & =m y^{2}+m z^{2}+m x^{2}+m z^{2} \\
2 m z^{2} & =0
\end{aligned}
$$



Figure 11.12: Position of a body

Since $2 m \neq 0, \Rightarrow z=0$
Hence the given object is a plane.
Similarly for a system of $n$ particles

$$
\begin{aligned}
\sum_{i=1}^{n} m_{i} x^{2}+\sum_{i=1}^{n} m_{i} y^{2} & =\sum_{i=1}^{n} m_{i} y^{2}+\sum_{i=1}^{n} m_{i} z^{2}+\sum_{i=1}^{n} m_{i} x^{2}+\sum_{i=1}^{n} m_{i} z^{2} \\
2 \sum_{i=1}^{n} m_{i} z_{i}^{2} & =0
\end{aligned}
$$

Since $2 \sum_{i=1}^{n} m_{i} \neq 0, \Rightarrow z_{i}=0 \forall i$
Hence the given object is a plane.

### 11.9 Angular Momentum of a Rigid Body

Angular momentum can be subdivided as the body can rotate about instantaneous axis and about fixed axis.

### 11.9.1 Angular Momentum of a Body Rotating About an Instantaneous Axis

Consider a system of $n$ particles rotating about an axis $O C$ through $O$ with angular velocity $\vec{\omega}$. Let $\hat{a}$ be a unit vector in the direction of $O C$ axis having direction cosines $\lambda, \mu, \nu$. Then

$$
\begin{equation*}
\hat{a}=\langle\lambda, \mu, \nu\rangle \tag{11.9.1}
\end{equation*}
$$

Let a particle of mass $m_{i}$ lying at $P$ having position vector $\vec{r}_{i}$. Then

$$
\begin{equation*}
\overrightarrow{O P}=\vec{r}=\left\langle x_{i}, y_{i}, z_{i}\right\rangle \tag{11.9.2}
\end{equation*}
$$

Let $d$ be its perpendicular distance from $O C$ axis. Then


Figure 11.13: Angular Momentum of a rigid body about instantaneous axis

$$
\begin{align*}
d=P M & =r \sin \theta=|\vec{r}||\hat{a}| \sin \theta \\
& =|\vec{r} \times \hat{a}| \tag{11.9.3}
\end{align*}
$$

Using (11.9.1) and (11.9.2), $\vec{r} \times \hat{a}$ is

$$
\begin{aligned}
\vec{r} \times \hat{a} & =\left(\begin{array}{ccc}
\hat{i} & \hat{j} & \hat{k} \\
x_{i} & y_{i} & z_{i} \\
\lambda & \mu & \nu
\end{array}\right) \\
& =\left\langle\nu y_{i}-\mu z_{i}, \lambda z_{i}-\nu x_{i}, \mu x_{i}-\lambda y_{i}\right\rangle
\end{aligned}
$$

(11.9.3) can be written as

$$
\begin{aligned}
d & =\sqrt{\left(\nu y_{i}-\mu z_{i}\right)^{2}+\left(\lambda z_{i}-\nu x_{i}\right)^{2}+\left(\mu x_{i}-\lambda y_{i}\right)^{2}} \\
& =\sqrt{\lambda^{2}\left(y_{i}^{2}+z_{i}^{2}\right)+\mu^{2}\left(z_{i}^{2}+x_{i}^{2}\right)+\nu^{2}\left(x_{i}^{2}+y_{i}^{2}\right)-2 \mu \nu y_{i} z_{i}-2 \lambda \nu x_{i} z_{i}-2 \lambda \mu x_{i} y_{i}}
\end{aligned}
$$

or

$$
\begin{align*}
d^{2} & =\lambda^{2}\left(y_{i}^{2}+z_{i}^{2}\right)+\mu^{2}\left(z_{i}^{2}+x_{i}^{2}\right)+\nu^{2}\left(x_{i}^{2}+y_{i}^{2}\right) \\
& -2 \mu \nu y_{i} z_{i}-2 \lambda \mu x_{i} z_{i}-2 \lambda \mu x_{i} y_{i} \tag{11.9.4}
\end{align*}
$$

Hence M.I. of mass $m_{i}$ about $O C$ axis with unit vector $\langle\lambda, \mu, \nu\rangle$ is

$$
\begin{align*}
I_{O C} & =m_{i}\left[\lambda^{2}\left(y_{i}^{2}+z_{i}^{2}\right)+\mu^{2}\left(z_{i}^{2}+x_{i}^{2}\right)+\nu^{2}\left(x_{i}^{2}+y_{i}^{2}\right)\right] \\
& -m_{i}\left[2 \mu \nu y_{i} z_{i}+2 \lambda \nu x_{i} z_{i}+2 \lambda \mu x_{i} y_{i}\right] \tag{11.9.5}
\end{align*}
$$

and the M.I. of of the body about $O C$ axis is

$$
\begin{align*}
I_{O C} & =\sum_{i=1}^{n} m_{i}\left[\lambda^{2}\left(y_{i}^{2}+z_{i}^{2}\right)+\mu^{2}\left(z_{i}^{2}+x_{i}^{2}\right)+\nu^{2}\left(x_{i}^{2}+y_{i}^{2}\right)\right] \\
& -\sum_{i=1}^{n} m_{i}\left[2 \mu \nu y_{i} z_{i}+2 \lambda \nu x_{i} z_{i}+2 \lambda \mu x_{i} y_{i}\right] \tag{11.9.6}
\end{align*}
$$

### 11.9.2 Angular Momentum of a Body Rotating About a Fixed Point and Fixed Axis

Consider a system of $n$ particles rotating about an axis $O C$ through $O$ with angular velocity $\vec{\omega}$. Let one of the points of the rigid body is fixed, so translation motion is absent. Let a particle of mass $m_{i}$ lying at $P$ having position vector $\vec{r}_{i}$. Then its linear velocity in terms of angular velocity is

$$
\begin{equation*}
\vec{v}_{i}=\vec{\omega} \times \vec{r}_{i} \tag{11.9.7}
\end{equation*}
$$

The linear momentum $p$ of the $i t h$ particle is


Figure 11.14: Angular momentum of a body

$$
\begin{equation*}
\vec{p}_{i}=m_{i} \vec{v}_{i} \tag{11.9.8}
\end{equation*}
$$

Using (11.9.7), (11.9.8) becomes

$$
\begin{equation*}
\vec{p}_{i}=m_{i}\left(\vec{\omega} \times \vec{r}_{i}\right) \tag{11.9.9}
\end{equation*}
$$

The angular momentum $L_{i}$ of the $i$ th particle is

$$
\begin{equation*}
\vec{L}_{i}=\vec{r}_{i} \times \vec{p}_{i} \tag{11.9.10}
\end{equation*}
$$

Using (11.9.9), (11.9.10) becomes

$$
\begin{equation*}
\vec{L}_{i}=\vec{r}_{i} \times m_{i}\left(\vec{\omega} \times \vec{r}_{i}\right) \tag{11.9.11}
\end{equation*}
$$

The angular momentum $L$ of the rigid body is

$$
\begin{align*}
L=\sum_{i=1}^{n} \vec{L}_{i} & =\sum_{i=1}^{n} m_{i}\left[\vec{r}_{i} \times\left(\vec{\omega} \times \vec{r}_{i}\right)\right] \\
& =\sum_{i=1}^{n} m_{i}\left[\left(\vec{r}_{i} \cdot \vec{r}_{i}\right) \vec{\omega}-\left(\vec{r}_{i} \cdot \vec{\omega}\right) \vec{r}_{i}\right] \\
& =\sum_{i=1}^{n} m_{i} r_{i}^{2} \vec{\omega}-\sum_{i=1}^{n} m_{i}\left(\vec{r}_{i} \cdot \vec{\omega}\right) \vec{r}_{i} \tag{11.9.12}
\end{align*}
$$

Next we consider a regular trihedral system. Then each $\vec{r}_{i}$ is

$$
\begin{equation*}
\vec{r}_{i}=\left\langle x_{i}, y_{i}, z_{i}\right\rangle \tag{11.9.13}
\end{equation*}
$$

and $\omega$ can be written as

$$
\vec{\omega}=\left\langle\omega_{x}, \omega_{y}, \omega_{z}\right\rangle
$$

Then we have

$$
\begin{equation*}
r_{i}^{2}=x_{i}^{2}+y_{i}^{2}+z_{i}^{2} \tag{11.9.14}
\end{equation*}
$$

and

$$
\vec{r}_{i} \cdot \vec{\omega}=x_{i} \omega_{x}+y_{i} \omega_{y}+z_{i} \omega_{z}
$$

Using above results (11.9.13)

$$
\begin{align*}
\left\langle L_{x}, L_{y}, L_{z}\right\rangle & =\sum_{i=1}^{n} m_{i}\left(x_{i}^{2}+y_{i}^{2}+z_{i}^{2}\right)\left\langle\omega_{x}, \omega_{y}, \omega_{z}\right\rangle \\
& -\sum_{i=1}^{n} m_{i}\left(x_{i} \omega_{x}+y_{i} \omega_{y}+z_{i} \omega_{z}\right)\left\langle x_{i}, y_{i}, z_{i}\right\rangle \tag{11.9.15}
\end{align*}
$$



Figure 11.15: Angular momentum of a rigid body

Next $x$ component of (11.9.15) can be written as

$$
\begin{align*}
L_{x} & =\sum_{i=1}^{n} m_{i}\left(x_{i}^{2}+y_{i}^{2}+z_{i}^{2}\right) \omega_{x}-\sum_{i=1}^{n} m_{i}\left(x_{i}^{2} \omega_{x}+x_{i} y_{i} \omega_{y}+x_{i} z_{i} \omega_{z}\right) \\
& =\sum_{i=1}^{n} m_{i}\left(y_{i}^{2}+z_{i}^{2}\right) \omega_{x}-\sum_{i=1}^{n} m_{i} x_{i} y_{i} \omega_{y}-\sum_{i=1}^{n} m_{i} x_{i} z_{i} \omega_{z} \tag{11.9.16}
\end{align*}
$$

Using (11.5.7), (11.6.1) and (11.6.2), (11.9.16) can be written as

$$
\begin{equation*}
L_{x}=I_{x x} \omega_{x}-I_{x y} \omega_{y}-I_{x z} \omega_{z} \tag{11.9.17}
\end{equation*}
$$

Using M.I. about coordinate axes (11.5.6), (11.5.7), (11.5.8) and product of inertia (11.6.1), (11.6.2) and (11.6.3), the $x, y, z$ components of angular momentum can be written as

$$
\begin{aligned}
L_{x} & =I_{x x} \omega_{x}-I_{x y} \omega_{y}-I_{x z} \omega_{z} \\
L_{y} & =-I_{y x} \omega_{x}+I_{y y} \omega_{y}-I_{y z} \omega_{z} \\
L_{z} & =-I_{z x} \omega_{x}-I_{z y} \omega_{y}+I_{z z} \omega_{z}
\end{aligned}
$$

In compact form it can be written as

$$
\begin{equation*}
L_{i}=\sum_{j=1}^{3} I_{i j} \omega_{j} \quad i=1,2,3 \tag{11.9.18}
\end{equation*}
$$

In another format it can be written as

$$
\begin{aligned}
L_{x} & =A \omega_{x}-F \omega_{y}-E \omega_{z} \\
L_{y} & =-F \omega_{x}+B \omega_{y}-D \omega_{z} \\
L_{z} & =-E \omega_{x}-D \omega_{y}+C \omega_{z}
\end{aligned}
$$

and in matrix form can be written as

$$
\left(\begin{array}{c}
L_{x}  \tag{11.9.19}\\
L_{y} \\
L_{z}
\end{array}\right)=\left(\begin{array}{ccc}
A & -F & -E \\
-F & B & -D \\
-E & -D & C
\end{array}\right)\left(\begin{array}{l}
\omega_{x} \\
\omega_{y} \\
\omega_{z}
\end{array}\right)
$$

and in symbolic form can be written as

$$
\vec{L}=[I] \vec{\omega}
$$

The inertia matrix $[I]$ gives us an idea about how the mass is distributed in a rigid body. (11.9.19) represents angular momentum of a rigid body about a fixed point in terms of inertia. It follows from (11.9.19), that the tensors of inertia are always symmetric. In many


Figure 11.16: Angular momentum when rotation of a body is about arbitrary axis
situations of importance, even for bodes of some symmetry, the angular momentum vector $L$ and the angular velocity vector $\omega$ are not parallel.

Corollary 11.9.1. Show that

$$
\begin{equation*}
L_{k}=I_{k} \omega \tag{11.9.20}
\end{equation*}
$$

where $L_{k}$ is the angular momentum and $I_{k}$ is the moment of inertia about $\hat{k}$ axis.

Solution: Let the rotation is about $\hat{k}$ axis. Then

$$
\vec{\omega}=\omega \hat{k}
$$

where is a unit vector pointing along the object's axis of rotation (in the sense given by the right-hand grip rule). then (11.9.7) can be written as

$$
\begin{equation*}
\vec{v}_{i}=\omega \hat{k} \times \vec{r}_{i} \tag{11.9.21}
\end{equation*}
$$

The angular momentum $L_{i}$ of the $i$ th particle (11.9.10)

$$
\begin{aligned}
\vec{L}_{i} & =\vec{r}_{i} \times \vec{p}_{i}=m_{i} \vec{r}_{i} \times \vec{v}_{i} \\
& =\vec{r}_{i} \times \vec{p}_{i}=\omega m_{i} \vec{r}_{i} \times\left(\hat{k} \times \vec{r}_{i}\right)
\end{aligned}
$$

And for the whole system

$$
L=\sum_{i=1}^{n} \vec{L}_{i}=\omega \sum_{i=1}^{n} m_{i}\left[\vec{r}_{i} \times\left(\hat{k} \times \vec{r}_{i}\right)\right]
$$

We can write the component of angular momentum along the axis of rotation as

$$
\begin{equation*}
L_{k}=\vec{L} . \hat{k}=\omega \sum_{i=1}^{n} m_{i}\left[\hat{k} \cdot \vec{r}_{i} \times\left(\hat{k} \times \vec{r}_{i}\right)\right] \tag{11.9.22}
\end{equation*}
$$

since $\vec{a} \cdot \vec{b} \times \vec{c}=\vec{a} \times \vec{b} \cdot \vec{c},(11.9 .22)$ can be rewritten as

$$
\begin{align*}
L_{k} & =\omega \sum_{i=1}^{n} m_{i}\left[\left(\hat{k} \times \vec{r}_{i}\right) \cdot\left(\hat{k} \times \vec{r}_{i}\right)\right]  \tag{11.9.23}\\
& =\omega \sum_{i=1}^{n} m_{i}\left|\hat{k} \times \vec{r}_{i}\right|^{2} \tag{11.9.24}
\end{align*}
$$

Next the term $\sum_{i=1}^{n} m_{i}\left|\hat{k} \times \vec{r}_{i}\right|^{2}$ is the moment of inertia about $\hat{k}$ axis. Let it be $I_{k}$. Then (11.9.23) can be rewritten as

$$
\begin{equation*}
L_{k}=I_{k} \omega \tag{11.9.25}
\end{equation*}
$$

It means that the component of a rigid body's angular momentum vector along its axis of rotation is simply the product of the body's moment of inertia about this axis and the body's angular velocity. Does this result imply that we can automatically write

$$
\begin{equation*}
\vec{L}=I \vec{\omega} \tag{11.9.26}
\end{equation*}
$$

Unfortunately, in general, the answer to the above question is no! This conclusion follows because the body may possess non-zero angular momentum components about axes perpendicular to its axis of rotation. Thus, in general, the angular momentum vector of a rotating body is not parallel to its angular velocity vector. This is a major difference from translational motion, where linear momentum is always found to be parallel to linear velocity.

### 11.10 Kinetic Energy of a Body Rotating About a Fixed Point

Consider a system of $n$ particles rotating about an axis $O C$ through $O$ with angular velocity $\vec{\omega}$. Let a particle of mass $m_{i}$ lying at $P$ having position vector $\vec{r}_{i}$. Then its linear velocity in terms of angular velocity is


Figure 11.17: Rotational Kinetic energy of a body

$$
\begin{equation*}
\vec{v}_{i}=\vec{\omega} \times \vec{r}_{i} \tag{11.10.1}
\end{equation*}
$$

And the kinetic energy of the $i t h$ particle is

$$
\begin{aligned}
K_{i} & =\frac{1}{2} m_{i} v_{i}^{2} \\
& =\frac{1}{2} m_{i}\left|\vec{v}_{i}\right|^{2} \\
& =\frac{1}{2} m_{i}\left(\vec{v}_{i} \cdot \vec{v}_{i}\right)
\end{aligned}
$$

Next the kinetic energy of the whole system is

$$
\begin{equation*}
K=\sum_{i=1}^{n} K_{i}=\frac{1}{2} \sum_{i=1}^{n} m_{i}\left(\vec{v}_{i} \cdot \vec{v}_{i}\right) \tag{11.10.2}
\end{equation*}
$$

Using (11.10.1), (11.10.2) becomes

$$
\begin{align*}
K= & =\frac{1}{2} \sum_{i=1}^{n} m_{i}\left(\vec{\omega} \times \vec{r}_{i}\right) \cdot\left(\vec{\omega} \times \vec{r}_{i}\right) \\
& =\frac{1}{2} \sum_{i=1}^{n} m_{i} \vec{\omega} \cdot\left[\vec{r}_{i} \times\left(\vec{\omega} \times \vec{r}_{i}\right)\right] \\
& =\frac{1}{2} \vec{\omega} \cdot \sum_{i=1}^{n} m_{i}\left(\vec{r}_{i} \times \vec{v}_{i}\right) \\
& =\frac{1}{2} \vec{\omega} \cdot \sum_{i=1}^{n}\left(\vec{r}_{i} \times m_{i} \vec{v}_{i}\right) \\
& =\frac{1}{2} \vec{\omega} \cdot \sum_{i=1}^{n}\left(\vec{r}_{i} \times \vec{p}_{i}\right) \\
& =\frac{1}{2} \vec{\omega} \cdot \sum_{i=1}^{n} \vec{L}_{i}  \tag{11.10.3}\\
& =\frac{1}{2} \vec{\omega} \cdot \vec{L} \tag{11.10.4}
\end{align*}
$$

Next we consider a regular trihedral system. Its angular momentum in terms of inertia is

$$
\begin{equation*}
\vec{L}_{i}=\sum_{i=1}^{3} I_{i j} \vec{\omega}_{j}, \quad i=j=1,2,3 \tag{11.10.5}
\end{equation*}
$$

and $\omega$ can be written as

$$
\vec{\omega}=\left\langle\omega_{1}, \omega_{2}, \omega_{3}\right\rangle
$$

Using (11.10.5), (11.10.3) becomes

$$
\begin{equation*}
K=\frac{1}{2} \sum_{i, j=1}^{3} I_{i j} \vec{\omega}_{i} \cdot \vec{\omega}_{j}, \quad i=j=1,2,3 \tag{11.10.6}
\end{equation*}
$$

Consider $O X Y Z$ a regular trihedral system, then

$$
K=\frac{1}{2}\left[I_{x x} \omega_{x}^{2}+I_{y y} \omega_{y}^{2}+I_{z z} \omega_{z}^{2}+2 I_{x y} \omega_{x} \omega_{y}+2 I_{y z} \omega_{y} \omega_{z}+2 I_{z x} \omega_{z} \omega_{x}\right]
$$

If the body rotates about $z$ axis with angular velocity $\omega$ then

$$
\omega_{z}=\omega, \quad \omega_{x}=0=\omega_{y}
$$

Then above relation becomes

$$
K=\frac{1}{2} I_{z z} \omega_{z}^{2}
$$



Figure 11.18: Rotational kinetic energy when rotation of a body is about z axis

In this case the components of angular momenta are

$$
\begin{aligned}
L_{x} & =I_{z x} \omega_{z} \\
L_{y} & =I_{y z} \omega_{z} \\
L_{z} & =I_{z z} \omega_{z}
\end{aligned}
$$

Which shows that in general, the direction of angular velocity and the direction of the angular momenta are different.
If the axis of rotation is coordinate axis it follows.

$$
\begin{equation*}
K=\frac{1}{2} I \omega^{2} \tag{11.10.7}
\end{equation*}
$$

### 11.11 Principal Axes

Consider a regular trihedral system. A body of mass $m$ is rotating about an axis through a point $O$ with angular velocity $\vec{\omega}$. If the angular momentum $\vec{L}$ is parallel to angular velocity $\vec{\omega}$ then the axis of rotation is known as principal axis. In equation form we can write as

$$
\begin{align*}
\vec{L} & =k \vec{\omega}  \tag{11.11.1}\\
\left\langle L_{x}, L_{y}, L_{z}\right\rangle & =\left\langle k \omega_{x}, k \omega_{y}, k \omega_{z}\right\rangle \tag{11.11.2}
\end{align*}
$$

where $k$ is some constant.
For a three-dimensional body, it is always possible to find three mutually orthogonal axis (a regular trihedral system), for which the products of inertia are zero, and the inertia
matrix takes a diagonal form. Then the rotation is about only one of these axis, and the angular momentum vector is parallel to the angular velocity vector. In most problems, such systems are preferred. For symmetric bodies, it may be obvious which axis are principle axis. However, for an irregular-shaped body this coordinate system may be difficult to determine by inspection.

Theorem 11.11.1. Prove that in general, there are three principal axes through a point of rigid body.

Proof Consider (11.9.19)

$$
\left(\begin{array}{c}
L_{x} \\
L_{y} \\
L_{z}
\end{array}\right)=\left(\begin{array}{ccc}
A & -F & -E \\
-F & B & -D \\
-E & -D & C
\end{array}\right)\left(\begin{array}{c}
\omega_{x} \\
\omega_{y} \\
\omega_{z}
\end{array}\right)
$$

Using (11.11.2) we can write

$$
\left(\begin{array}{c}
k \omega_{x} \\
k \omega_{y} \\
k \omega_{z}
\end{array}\right)=\left(\begin{array}{ccc}
A \omega_{x} & -F \omega_{y} & -E \omega_{z} \\
-F \omega_{x} & B \omega_{y} & -D \omega_{z} \\
-E \omega_{x} & -D \omega_{y} & C \omega_{z}
\end{array}\right)
$$

or can be written as

$$
\begin{aligned}
k \omega_{x} & =A \omega_{x}-F \omega_{y}-E \omega_{z} \\
k \omega_{y} & =-F \omega_{x}+B \omega_{y}-D \omega_{z} \\
k \omega_{z} & =-E \omega_{x}-D \omega_{y}+C \omega_{z}
\end{aligned}
$$

and we have

$$
\begin{align*}
(A-k) \omega_{x}-F \omega_{y}-E \omega_{z} & =0 \\
-F \omega_{x}+(B-k) \omega_{y}-D \omega_{z} & =0  \tag{11.11.3}\\
-E \omega_{x}-D \omega_{y}+(C-k) \omega_{z} & =0
\end{align*}
$$

The above system has a non-zero solution only if

$$
\begin{align*}
& \left|\begin{array}{ccc}
A-k & -F & -E \\
-F & B-k & -D \\
-E & -D & C-k
\end{array}\right|=0 \\
& \left|\left(\begin{array}{ccc}
A-k & -F & -E \\
-F & B-k & -D \\
-E & -D & C-k
\end{array}\right)+k\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)\right|=0 \\
&  \tag{11.11.4}\\
& \\
& |I-k E|=0
\end{align*}
$$

Where $E$ is identity matrix.
(11.11.13) is known as characteristic equation of symmetric inertia matrix. This equation has three real roots (since matrix is symmetric), known as eigen values. Let $k=\left(k_{1}, k_{2}, k_{3}\right)$ be the corresponding roots. Let $(\lambda, \mu, \nu)$ has values as

$$
\begin{aligned}
\left(\lambda_{1}, \mu_{1}, \nu_{1}\right) \rightarrow k & =k_{1} \\
\left(\lambda_{2}, \mu_{2}, \nu_{2}\right) \rightarrow k & =k_{2} \\
\left(\lambda_{3}, \mu_{3}, \nu_{3}\right) \rightarrow k & =k_{3}
\end{aligned}
$$

These three sets of value determine three principal axes $\hat{a}_{1}, \hat{a}_{2}, \hat{a}_{3}$ has the form

$$
\hat{a}_{j}=\left\langle\lambda_{j}, \mu_{j}, \nu_{j}\right\rangle \quad \text { with } j=1,2,3
$$

Another Approach Let $\hat{a}$ be a unit vector along principal axis of body through $O$. Then angular velocity vector is

$$
\vec{\omega}=\omega \hat{a}
$$

and angular momentum is

$$
\vec{L}=L \hat{a}
$$

using (11.11.1)

$$
\vec{L}=k \omega \hat{a}
$$

Also consider (11.9.12)

$$
L=\sum_{i=1}^{n} m_{i} r_{i}^{2} \vec{\omega}-\sum_{i=1}^{n} m_{i}\left(\vec{r}_{i} \cdot \vec{\omega}\right) \vec{r}_{i}
$$

using above results we have

$$
\begin{aligned}
k \omega \hat{a} & =\sum_{i=1}^{n} m_{i} r_{i}^{2} \omega \hat{a}-\sum_{i=1}^{n} m_{i}\left(\vec{r}_{i} \cdot \omega \hat{a}\right) \vec{r}_{i} \\
& =\omega\left(\sum_{i=1}^{n} m_{i} r_{i}^{2} \hat{a}-\sum_{i=1}^{n} m_{i}\left(\vec{r}_{i} \cdot \hat{a}\right) \vec{r}_{i}\right)
\end{aligned}
$$

Canceling $\omega$ on both sides, we have

$$
k \hat{a}=\sum_{i=1}^{n} m_{i} r_{i}^{2} \hat{a}-\sum_{i=1}^{n} m_{i}\left(\vec{r}_{i} \cdot \hat{a}\right) \vec{r}_{i}
$$

or we can write

$$
\begin{equation*}
\sum_{i=1}^{n} m_{i}\left(\vec{r}_{i} \cdot \hat{a}\right) \vec{r}_{i}=\left(\sum_{i=1}^{n} m_{i} r_{i}^{2}-k\right) \hat{a} \tag{11.11.5}
\end{equation*}
$$

Let

$$
\vec{r}_{i}=\left\langle x_{i}, y_{i}, z_{i}\right\rangle
$$

and

$$
\hat{a}=\langle\lambda, \mu, \nu\rangle
$$

Then

$$
r_{i}^{2}=x_{i}^{2}+y_{i}^{2}+z_{i}^{2}
$$

and

$$
\vec{r}_{i} \cdot \hat{a}=x_{i} \lambda+y_{i} \mu+z_{i} \nu
$$

using above results (11.11.5) becomes

$$
\sum_{i=1}^{n} m_{i}\left(x_{i} \lambda+y_{i} \mu+z_{i} \nu\right)\left\langle x_{i}, y_{i}, z_{i}\right\rangle=\left(\sum_{i=1}^{n} m_{i}\left(x_{i}^{2}+y_{i}^{2}+z_{i}^{2}\right)-k\right)\langle\lambda, \mu, \nu\rangle
$$

Since the above two vectors are equal, so their corresponding entries must be equal

$$
\begin{aligned}
\sum_{i=1}^{n} m_{i}\left(x_{i}^{2} \lambda+x_{i} y_{i} \mu+x_{i} z_{i} \nu\right) & =\left(\sum_{i=1}^{n} m_{i}\left(x_{i}^{2}+y_{i}^{2}+z_{i}^{2}\right)-k\right) \lambda \\
\sum_{i=1}^{n} m_{i}\left(x_{i} y_{i} \lambda+y_{i}^{2} \mu+y_{i} z_{i} \nu\right) & =\left(\sum_{i=1}^{n} m_{i}\left(x_{i}^{2}+y_{i}^{2}+z_{i}^{2}\right)-k\right) \mu \\
\sum_{i=1}^{n} m_{i}\left(x_{i} z_{i} \lambda+y_{i} z_{i} \mu+z_{i}^{2} \nu\right) & =\left(\sum_{i=1}^{n} m_{i}\left(x_{i}^{2}+y_{i}^{2}+z_{i}^{2}\right)-k\right) \nu
\end{aligned}
$$

Let

$$
\vec{r}_{i}=\left\langle x_{i}, y_{i}, z_{i}\right\rangle
$$

and

$$
\hat{a}=\langle\lambda, \mu, \nu\rangle
$$

Then

$$
r_{i}^{2}=x_{i}^{2}+y_{i}^{2}+z_{i}^{2}
$$

and

$$
\vec{r}_{i} \cdot \hat{a}=x_{i} \lambda+y_{i} \mu+z_{i} \nu
$$

using above results (11.11.5) becomes

$$
\sum_{i=1}^{n} m_{i}\left(x_{i} \lambda+y_{i} \mu+z_{i} \nu\right)\left\langle x_{i}, y_{i}, z_{i}\right\rangle=\left(\sum_{i=1}^{n} m_{i}\left(x_{i}^{2}+y_{i}^{2}+z_{i}^{2}\right)-k\right)\langle\lambda, \mu, \nu\rangle
$$

Since the above two vectors are equal, so their corresponding entries must be equal

$$
\begin{aligned}
\sum_{i=1}^{n} m_{i}\left(x_{i}^{2} \lambda+x_{i} y_{i} \mu+x_{i} z_{i} \nu\right) & =\left(\sum_{i=1}^{n} m_{i}\left(x_{i}^{2}+y_{i}^{2}+z_{i}^{2}\right)-k\right) \lambda \\
\sum_{i=1}^{n} m_{i}\left(x_{i} y_{i} \lambda+y_{i}^{2} \mu+y_{i} z_{i} \nu\right) & =\left(\sum_{i=1}^{n} m_{i}\left(x_{i}^{2}+y_{i}^{2}+z_{i}^{2}\right)-k\right) \mu \\
\sum_{i=1}^{n} m_{i}\left(x_{i} z_{i} \lambda+y_{i} z_{i} \mu+z_{i}^{2} \nu\right) & =\left(\sum_{i=1}^{n} m_{i}\left(x_{i}^{2}+y_{i}^{2}+z_{i}^{2}\right)-k\right) \nu
\end{aligned}
$$

or

$$
\begin{aligned}
& \left(\sum_{i=1}^{n} m_{i}\left(y_{i}^{2}+z_{i}^{2}\right)-k\right) \lambda-\sum_{i=1}^{n} m_{i} x_{i} y_{i} \mu-\sum_{i=1}^{n} m_{i} x_{i} z_{i} \nu=0 \\
& \left(\sum_{i=1}^{n} m_{i}\left(x_{i}^{2}+z_{i}^{2}\right)-k\right) \mu-\sum_{i=1}^{n} m_{i} x_{i} y_{i} \lambda-\sum_{i=1}^{n} m_{i} y_{i} z_{i} \nu=0 \\
& \left(\sum_{i=1}^{n} m_{i}\left(x_{i}^{2}+y_{i}^{2}\right)-k\right) \nu-\sum_{i=1}^{n} m_{i} x_{i} z_{i} \lambda-\sum_{i=1}^{n} m_{i} y_{i} z_{i} \mu=0
\end{aligned}
$$

Using the notations of M.I about coordinate axis and products of inertia

$$
\begin{aligned}
(A-k) \lambda-F \mu-E \nu & =0 \\
-F \lambda+(B-k) \mu-D \nu & =0 \\
-E \lambda-D \mu+(C-k) \nu & =0
\end{aligned}
$$

Next is the same as above.
Theorem 11.11.2. Three principal axes through a point of a rigid body are mutually orthogonal.

Proof Let $\hat{a}_{1}, \hat{a}_{2}, \hat{a}_{3}$ be three principal axes corresponding to eigen values $k_{1}, k_{2}, k_{3}$ of the characteristic equation

$$
\left|\begin{array}{ccc}
A-k & -F & -E \\
-F & B-k & -D \\
-E & -D & C-k
\end{array}\right|=0
$$

Let all the eigen values $k_{1}, k_{2}, k_{3}$ are different. Then (11.11.5)

$$
\sum_{i=1}^{n} m_{i}\left(\vec{r}_{i} \cdot \hat{a}\right) \vec{r}_{i}=\left(\sum_{i=1}^{n} m_{i} r_{i}^{2}-k\right) \hat{a}
$$

takes the form

$$
\begin{align*}
\sum_{i=1}^{n} m_{i}\left(\vec{r}_{i} \cdot \hat{a}_{1}\right) \vec{r}_{i} & =\left(\sum_{i=1}^{n} m_{i} r_{i}^{2}-k_{1}\right) \hat{a}_{1}  \tag{11.11.6}\\
\sum_{i=1}^{n} m_{i}\left(\vec{r}_{i} \cdot \hat{a}_{2}\right) \vec{r}_{i} & =\left(\sum_{i=1}^{n} m_{i} r_{i}^{2}-k_{2}\right) \hat{a}_{2}  \tag{11.11.7}\\
\sum_{i=1}^{n} m_{i}\left(\vec{r}_{i} \cdot \hat{a}_{3}\right) \vec{r}_{i} & =\left(\sum_{i=1}^{n} m_{i} r_{i}^{2}-k_{3}\right) \hat{a}_{3} \tag{11.11.8}
\end{align*}
$$

Next we eliminate the sums. First consider (11.11.6) and (11.11.7). Scalar Multiplication of (11.11.6) by $\hat{a}_{2}$ and (11.11.7) by $\hat{a}_{1}$ and then subtracting we get.

$$
\left(k_{1}-k_{2}\right) \hat{a}_{1} \cdot \hat{a}_{2}=0
$$

Since $k_{1}$ and $k_{2}$ are different. i.e $k_{1}-k_{2} \neq 0$. Then

$$
\begin{equation*}
\hat{a}_{1} \cdot \hat{a}_{2}=0 \tag{11.11.9}
\end{equation*}
$$

Similarly

$$
\begin{equation*}
\hat{a}_{1} \cdot \hat{a}_{3}=0 \tag{11.11.10}
\end{equation*}
$$

and

$$
\begin{equation*}
\hat{a}_{2} \cdot \hat{a}_{3}=0 \tag{11.11.11}
\end{equation*}
$$

(11.11.9), (11.11.10) and (11.11.11) shows that $\hat{a}_{1}, \hat{a}_{2}, \hat{a}_{3}$ are mutually orthogonal.

Remark 11.11.1. For a general three-dimensional body, it is always possible to find three mutually orthogonal axis (a regular trihedral system) for which the products of inertia are zero, and the inertia matrix is a diagonal matrix. In most problems, this would be the preferred system in which to formulate a problem. For a rotation about only one of these axis, the angular momentum vector is parallel to the angular velocity vector. For symmetric bodies, it may be obvious which axis are principle axis. However, for an irregular-shaped body this coordinate system may be difficult to determine by inspection; we will present a general method to determine these axes in the next section.

1. If a body has $k_{1} \neq k_{2} \neq k_{3}$ i.e. all principal moments of inertia are distinct, then there are exactly three mutually perpendicular axis through $O$. It is termed as asymmetric top
2. If a body has $k_{1} \neq k_{2}=k_{3}$ (i.e two roots are equal) then there is one principal axis corresponding to $k_{1}$ through $O$, and every line through $O$ and perpendicular to $\hat{a}_{1}$ axis is a principal axis. Hence we have infinite set of principal axes with one fixed principal axis along $\left(\hat{a}_{1}\right)$. It is termed as symmetrical top.
3. If a body has $k_{1}=k_{2}=k_{3}$ then any three mutually perpendicular axis through $O$ (center of a sphere) are principal axis, it is termed as spherical top.
4. If a body has $k_{1}=0$ and $k_{2}=k_{3}$, as for example, two point masses connected by a weightless shaft, or a diatomic molecule, it is called a rotor.

Theorem 11.11.3. If the principal axes are along coordinate axes, then the products of inertia are zero and hence write inertia matrix and angular momentum.

Proof Consider a regular trihedral system. Let $\hat{a}_{1}, \hat{a}_{2}, \hat{a}_{3}$ be three principal axes with eigen values $k_{1}, k_{2}, k_{3}$. Let $\hat{a}_{1}$ be along $x-$ axis, $\hat{a}_{2}$ be along $y-a x i s$ and $\hat{a}_{3}$ be along $z-a x i s$. The position vector $r_{i}$ of mass $m_{i}$ relative to principal axes is


Figure 11.19: Principal axis for cylinder

$$
\begin{equation*}
r_{i}=x_{i} \hat{a}_{1}+y_{i} \hat{a}_{2}+z_{i} \hat{a}_{3} \tag{11.11.12}
\end{equation*}
$$

Consider (11.11.6), (11.11.7) and (11.11.8)

$$
\begin{aligned}
\sum_{i=1}^{n} m_{i}\left(\vec{r}_{i} \cdot \hat{a}_{1}\right) \vec{r}_{i} & =\left(\sum_{i=1}^{n} m_{i} r_{i}^{2}-k_{1}\right) \hat{a}_{1} \\
\sum_{i=1}^{n} m_{i}\left(\vec{r}_{i} \cdot \hat{a}_{2}\right) \vec{r}_{i} & =\left(\sum_{i=1}^{n} m_{i} r_{i}^{2}-k_{2}\right) \hat{a}_{2} \\
\sum_{i=1}^{n} m_{i}\left(\vec{r}_{i} \cdot \hat{a}_{3}\right) \vec{r}_{i} & =\left(\sum_{i=1}^{n} m_{i} r_{i}^{2}-k_{3}\right) \hat{a}_{3}
\end{aligned}
$$

Consider the terms

$$
\begin{aligned}
\vec{r}_{i} \cdot \hat{a}_{1} & =\left(x_{i} \hat{a}_{1}+y_{i} \hat{a}_{2}+z_{i} \hat{a}_{3}\right) \cdot \hat{a}_{1} \\
& =x_{i} \\
\text { and } \vec{r}_{i} \cdot \hat{a}_{2} & =y_{i} \\
\vec{r}_{i} \cdot \hat{a}_{3} & =z_{i} \\
r_{i}^{2} & =x_{i}^{2}+y_{i}^{2}+z_{i}^{2}
\end{aligned}
$$



Figure 11.20: Principal axis for sphere

Using above results (11.11.6), (11.11.7) and (11.11.8) becomes.

$$
\begin{aligned}
\sum_{i=1}^{n} m_{i} x_{i}\left(x_{i} \hat{a}_{1}+y_{i} \hat{a}_{2}+z_{i} \hat{a}_{3}\right) & =\left(\sum_{i=1}^{n} m_{i}\left(x_{i}^{2}+y_{i}^{2}+z_{i}^{2}\right)-k_{1}\right) \hat{a}_{1} \\
\sum_{i=1}^{n} m_{i}\left(x_{i}^{2} \hat{a}_{1}+x_{i} y_{i} \hat{a}_{2}+x_{i} z_{i} \hat{a}_{3}\right) & =\left(\sum_{i=1}^{n} m_{i}\left(x_{i}^{2}+y_{i}^{2}+z_{i}^{2}\right)-k_{1}\right) \hat{a}_{1}
\end{aligned}
$$

Comparing coefficients of $\hat{a}_{i} ; i=1,2,3$ on both sides, we have

$$
\sum_{i=1}^{n} m_{i} x_{i}^{2}=\left(\sum_{i=1}^{n} m_{i}\left(x_{i}^{2}+y_{i}^{2}+z_{i}^{2}\right)-k_{1}\right)
$$

or

$$
k_{1}=\sum_{i=1}^{n} m_{i}\left(y_{i}^{2}+z_{i}^{2}\right)=A^{*}
$$

and

$$
\begin{aligned}
& \sum_{i=1}^{n} m_{i} x_{i} y_{i}=0=F^{*} \\
& \sum_{i=1}^{n} m_{i} x_{i} z_{i}=0=E^{*}
\end{aligned}
$$

Similarly (11.11.7) gives

$$
k_{2}=\sum_{i=1}^{n} m_{i}\left(x_{i}^{2}+z_{i}^{2}\right)=B^{*}
$$



Figure 11.21: Principal axes along coordinate axes
and

$$
\begin{aligned}
& \sum_{i=1}^{n} m_{i} x_{i} y_{i}=0=F^{*} \\
& \sum_{i=1}^{n} m_{i} y_{i} z_{i}=0=D^{*}
\end{aligned}
$$

and (11.11.8) gives

$$
k_{3}=\sum_{i=1}^{n} m_{i}\left(x_{i}^{2}+y_{i}^{2}\right)=C^{*}
$$

and

$$
\begin{aligned}
& \sum_{i=1}^{n} m_{i} x_{i} z_{i}=0=E^{*} \\
& \sum_{i=1}^{n} m_{i} y_{i} z_{i}=0=D^{*}
\end{aligned}
$$

From above we see that products of inertia are zero. i.e

$$
D^{*}=0=E^{*}=F^{*}
$$

Hence the inertia matrix for principal axes through $O$ is

$$
\left(\begin{array}{ccc}
k_{1} & 0 & 0  \tag{11.11.13}\\
0 & k_{2} & 0 \\
0 & 0 & k_{3}
\end{array}\right)=\left(\begin{array}{ccc}
A^{*} & 0 & 0 \\
0 & B^{*} & 0 \\
0 & 0 & C^{*}
\end{array}\right)
$$

Next we define principal axes as:
Three mutually perpendicular lines through any point of a body which are such that the product of inertia about them vanishes are known as principal axes.
Let $\omega_{x}, \omega_{y}, \omega_{z}$ be the components of $\omega$ along $\hat{a}_{1}, \hat{a}_{2}, \hat{a}_{3}$ axes respectively, then angular momentum (11.9.19) becomes:

$$
\left(\begin{array}{c}
L_{x}  \tag{11.11.14}\\
L_{y} \\
L_{z}
\end{array}\right)=\left(\begin{array}{ccc}
A^{*} & 0 & 0 \\
0 & B^{*} & 0 \\
0 & 0 & C^{*}
\end{array}\right)\left(\begin{array}{l}
\omega_{x} \\
\\
\omega_{y} \\
\\
\omega_{z}
\end{array}\right)
$$

Hence $A^{*}, B^{*}, C^{*}$ are also called principal moments of inertia. In this case the angular momentum (11.11.2) is

$$
\begin{equation*}
\left\langle L_{x}, L_{y}, L_{z}\right\rangle=\left\langle A^{*} \omega_{x}, B^{*} \omega_{y}, C^{*} \omega_{z}\right\rangle \tag{11.11.15}
\end{equation*}
$$

### 11.12 Equimomental Systems

Two systems are said to be equimomental if they have equal moment of inertia about every line in space.

Theorem 11.12.1. :- The necessary and sufficient condition for two systems to be equimomental are

1. They have same total mass.
2. They have same centroid.
3. They have same principal axes.

These conditions are sufficient.
Proof:- Part A
If (1) to (3) are true, two systems are equimomental.
Consider two systems, each having mass $m$ (see Fig. 11.23). Let $O=G$ be the common


Figure 11.22: Equimomental Systems
centroid of both the system. Let $A^{*}, B^{*}, C^{*}$ be the principal moment of inertia about principal axes through $O$ for both the systems. Let $l_{1}$ be any line in the direction of $\hat{a}_{1}$ (unit vector) with direction cosines $\langle\lambda, \mu, \nu\rangle$ passing through $O$. Also $l_{2}$ be another line in the direction of $\hat{a}_{2}$ (unit vector) with direction cosines $\langle\lambda, \mu, \nu\rangle$. Let $h$ be the perpendicular
distance between $\hat{a}_{1}$ and $\hat{a}_{2}$. The principal moment of inertia about $\hat{a}_{1}$ for both the system is

$$
\begin{equation*}
I_{\hat{a}_{1}}=A^{*} \lambda^{2}+B^{*} \mu^{2}+C^{*} \nu^{2} \tag{11.12.1}
\end{equation*}
$$

And by parallel axes theorem, the principal moment of inertia about $\hat{a}_{2}$ for both the system is

$$
\begin{align*}
I_{\hat{a}_{2}} & =I_{\hat{a}_{1}}+m h^{2} \\
& =A^{*} \lambda^{2}+B^{*} \mu^{2}+C^{*} \nu^{2}+m h^{2} \tag{11.12.2}
\end{align*}
$$

Hence both the system have same principal moment of inertia about any line of space. So they are equimomental.
Part B:- The conditions are necessary. Let the two systems are equimomental, then conditions (1) to (3) are true. Let $m_{1}$ be the mass of system $I$ with centroid at $G_{1}$ and $m_{2}$ be the mass of system $I I$ with centroid at $G_{2}$ (see Fig. 11.23).
Condition (1) They have same total mass.


Figure 11.23: Equimomental Systems

Since the systems are equimomental i.e. they have same moment of inertia about any line. Let $G_{1} G_{2}$ be the line and $I$ be the moment of inertia of each system about it. Also $\hat{a}$ be a unit vector parallel to $G_{1} G_{2}$ at a distance $h$. Then by parallel axes theorem, moment of inertia of system $I$ about a line along $\hat{a}$ is

$$
\begin{equation*}
I_{1}=I+m_{1} h^{2} \tag{11.12.3}
\end{equation*}
$$

moment of inertia of system $I I$ about a line along $\hat{a}$ is

$$
\begin{equation*}
I_{2}=I+m_{2} h^{2} \tag{11.12.4}
\end{equation*}
$$

Since the two systems are equimomental, i.e. $I_{1}=I_{2}$, then by (11.12.3) and (11.12.4), we have

$$
\begin{aligned}
I+m_{1} h^{2} & =I+m_{1} h^{2} \\
m_{1} & =m_{2}=m
\end{aligned}
$$

Hence both systems have same mass.
Condition (2) They have same centroid.
Since the systems are equimomental i.e. they have same moment of inertia about any line. Let $I$ be the moment of inertia about line $G_{1} G_{2}$. (see Fig. 11.24) Let $\hat{a}_{1}$ and $\hat{a}_{2}$ be two


Figure 11.24: Equimomental Systems
unit vectors, perpendicular to line $G_{1} G_{2}$. Hence the distance between these two parallel vectors is $\overline{G_{1} G_{2}}=h$. Since the systems are equimomental i.e. they have same moment of inertia about any line. Let $I$ be the moment of inertia of either system about a line along $\hat{a}_{1}$. Using parallel axes theorem, the moment of inertia of system $I$ about a line along $\hat{a}_{2}$ is

$$
\begin{equation*}
I_{1}=I+m h^{2} \tag{11.12.5}
\end{equation*}
$$

and moment of inertia of system $I I$ about about a line along $\hat{a}_{2}$ is

$$
\begin{equation*}
I_{2}=I-m h^{2} \tag{11.12.6}
\end{equation*}
$$

Since the two systems are equimomental, i.e. $I_{1}=I_{2}$, then by (11.12.5) and (11.12.6), we have

$$
\begin{aligned}
I+m h^{2} & =I-m h^{2} \\
2 m h^{2} & =0
\end{aligned}
$$

since $m \neq 0$, Hence we have

$$
h=0
$$

Hence both systems have same centroid. i.e. $G_{1}=G_{2}=G$
Condition (3) They have same principal axes.
Since the systems are equimomental i.e. they have same moment of inertia about every line through their common centroid. Hence they have same principal axes and principal moments of inertia.

### 11.13 Coplanar Distribution

Theorem 11.13.1. Show that for a two dimensional mass distribution (lamina), one of the principal axes at origin $O$ is inclined at an angle $\theta$ to the $x$-axis through $O$, such that

$$
\tan 2 \theta=\frac{2 F}{B-A}
$$

where $A, B, F$ have their usual meanings.

## Proof

Consider a fixed $x y$-cartesian system $O X Y$. Let a particle of mass $m$ be at $P\left(x_{i}, y_{i}\right)$ (see Fig. 11.25). Using (11.6.10) the moments of inertia of mass distribution (lamina) about


Figure 11.25: Equimomental Systems
coordinate axes ( $O x, O y$ ) are

$$
\begin{align*}
& A=\sum_{i=1}^{n} m_{i} y_{i}^{2}  \tag{11.13.1}\\
& B=\sum_{i=1}^{n} m_{i} x_{i}^{2} \tag{11.13.2}
\end{align*}
$$

and using(11.6.11) the product of inertia $F$ is

$$
\begin{equation*}
F=\sum_{i=1}^{n} m_{i} x_{i} y_{i} \tag{11.13.3}
\end{equation*}
$$

Introduce another $x y$-coordinate system $O x^{\prime} y^{\prime}$ rotatable with same origin $O$. Let it be rotated about the origin through an angle $\theta$ with $x^{\prime} y^{\prime}$-coordinate system. As shown in the figure 11.26. Then $P\left(x_{i}^{\prime}, y_{i}^{\prime}\right)$ in terms of $P\left(x_{i}, y_{i}\right)$ is (using (??) and (??))


Figure 11.26: Equimomental Systems

$$
\begin{aligned}
x_{i}^{\prime} & =x_{i} \cos \theta-y_{i} \sin \theta \\
y_{i}^{\prime} & =x_{i} \sin \theta+y_{i} \cos \theta
\end{aligned}
$$

Using (11.6.10) the moments of inertia of lamina about coordinate axes $\left(O x^{\prime}, O y^{\prime}\right)$ are

$$
\begin{aligned}
& A_{O x^{\prime}}=\sum_{i=1}^{n} m_{i}\left(y_{i}^{\prime}\right)^{2} \\
& B_{O y^{\prime}}=\sum_{i=1}^{n} m_{i}\left(x_{i}^{\prime}\right)^{2}
\end{aligned}
$$

and using(11.6.11) the product of inertia $F$ is

$$
F_{x^{\prime} y^{\prime}}=\sum_{i=1}^{n} m_{i} x_{i}^{\prime} y_{i}^{\prime}
$$

Using above transformations, we have

$$
\begin{aligned}
A_{O x^{\prime}} & =\sum_{i=1}^{n} m_{i}\left(x_{i} \sin \theta+y_{i} \cos \theta\right)^{2} \\
& =\sin ^{2} \theta \sum_{i=1}^{n} m_{i} x_{i}^{2}+\cos ^{2} \theta \sum_{i=1}^{n} m_{i} y_{i}^{2}+2 \sin \theta \cos \theta \sum_{i=1}^{n} m_{i} x_{i} y_{i}
\end{aligned}
$$

Using (11.13.1), (11.13.2) and (11.13.3), we have

$$
\begin{equation*}
A_{O x^{\prime}}=A \sin ^{2} \theta+B \cos ^{2} \theta+F \sin 2 \theta \tag{11.13.4}
\end{equation*}
$$

Similarly

$$
\begin{align*}
B_{O y^{\prime}} & =\sum_{i=1}^{n} m_{i}\left(x_{i} \cos \theta-y_{i} \sin \theta\right)^{2} \\
& =A \cos ^{2} \theta+B \sin ^{2} \theta-F \sin 2 \theta \tag{11.13.5}
\end{align*}
$$

and

$$
\begin{aligned}
F_{x^{\prime} y^{\prime}} & =\sum_{i=1}^{n} m_{i}\left(x_{i} \cos \theta-y_{i} \sin \theta\right)\left(x_{i} \sin \theta+y_{i} \cos \theta\right) \\
& =\sin \theta \cos \theta\left(\sum_{i=1}^{n} m_{i} x_{i}^{2}-\sum_{i=1}^{n} m_{i} y_{i}^{2}\right)+\left(\cos ^{2} \theta-\sin ^{2} \theta\right) \sum_{i=1}^{n} m_{i} x_{i} y_{i} \\
& =(A-B) \frac{1}{2} \sin 2 \theta+F \cos 2 \theta
\end{aligned}
$$

The axes $O x^{\prime}, O y^{\prime}$ will be principal axes if

$$
\begin{aligned}
F_{x^{\prime} y^{\prime}} & =0 \\
(A-B) \frac{1}{2} \sin 2 \theta+F \cos 2 \theta & =0
\end{aligned}
$$

Then we have

$$
\begin{equation*}
\tan 2 \theta=\frac{2 F}{B-A} \tag{11.13.6}
\end{equation*}
$$

or

$$
\begin{equation*}
\theta=\frac{1}{2} \arctan \left(\frac{2 F}{B-A}\right) \tag{11.13.7}
\end{equation*}
$$

(11.13.7) is the direction of principal axes relative to co-ordinates axes.

Theorem 11.13.2. For a 2 - Dimensional mass distribution (lamina), the value of maximum and minimum moment of inertia about lines passing through a point $O$ are attained through principal axes at $O$.

## Proof

The maximum/minimum (extreme) values of $A_{O x^{\prime}}, B_{O y^{\prime}}$ can also be obtained. Consider (11.13.4)

$$
\begin{align*}
A_{O x^{\prime}} & =A \sin ^{2} \theta+B \cos ^{2} \theta+F \sin 2 \theta \\
& =\frac{1}{2}\left[A \sin ^{2} \theta+B \cos ^{2} \theta\right]+\frac{1}{2}\left[A \sin ^{2} \theta+B \cos ^{2} \theta\right]+F \sin 2 \theta \\
& =\frac{1}{2}\left[A\left(1-\cos ^{2} \theta\right)+B \cos ^{2} \theta\right]+\frac{1}{2}\left[A \sin ^{2} \theta+B\left(1-\sin ^{2} \theta\right)\right]+F \sin 2 \theta \\
& =\frac{1}{2}(A+B)+\frac{1}{2}\left[(B-A)\left(\cos ^{2} \theta-\sin ^{2} \theta\right)\right]+F \sin 2 \theta \\
& =\frac{1}{2}(A+B)+\frac{1}{2}(B-A) \cos 2 \theta+F \sin 2 \theta \tag{11.13.8}
\end{align*}
$$

Similarly from (11.13.5) we have

$$
\begin{equation*}
B_{O y^{\prime}}=\frac{1}{2}(A+B)-\frac{1}{2}(B-A) \cos 2 \theta-F \sin 2 \theta \tag{11.13.9}
\end{equation*}
$$

From (11.13.6), we can write

$$
\begin{equation*}
\sin 2 \theta=\frac{2 F}{\sqrt{4 F^{2}+(B-A)^{2}}} \tag{11.13.10}
\end{equation*}
$$

and

$$
\begin{equation*}
\cos 2 \theta=\frac{(B-A)}{\sqrt{4 F^{2}+(B-A)^{2}}} \tag{11.13.11}
\end{equation*}
$$

Using (11.13.10) and (11.13.11) in (11.13.8), we have

$$
\begin{align*}
A_{O x^{\prime}} & =\frac{1}{2}(A+B)+\frac{1}{2} \frac{(B-A)^{2}}{\sqrt{4 F^{2}+(B-A)^{2}}}+\frac{2 F^{2}}{\sqrt{4 F^{2}+(B-A)^{2}}} \\
& =\frac{1}{2}(A+B)+\frac{1}{2}\left[\frac{(B-A)^{2}+4 F^{2}}{\sqrt{4 F^{2}+(B-A)^{2}}}\right]  \tag{11.13.12}\\
& =\frac{1}{2}\left[(A+B)+\sqrt{4 F^{2}+(B-A)^{2}}\right] \tag{11.13.13}
\end{align*}
$$

Similarly

$$
\begin{equation*}
B_{O y^{\prime}}=\frac{1}{2}\left[(A+B)-\sqrt{4 F^{2}+(B-A)^{2}}\right] \tag{11.13.14}
\end{equation*}
$$

Also

$$
\begin{equation*}
C_{O z^{\prime}}=A_{O x^{\prime}}+B_{O y^{\prime}} \tag{11.13.15}
\end{equation*}
$$

For critical points

$$
\begin{aligned}
& \frac{d A_{O x^{\prime}}}{d \theta}=0 \\
& \frac{d B_{O y^{\prime}}}{d \theta}=0
\end{aligned}
$$

From (11.13.8), we have

$$
\begin{aligned}
\frac{d A_{O x^{\prime}}}{d \theta}= & -(B-A) \sin 2 \theta+2 F \cos 2 \theta=0 \\
& \tan 2 \theta=\frac{2 F}{B-A}
\end{aligned}
$$

same calculated in (11.13.6)
Similarly $\frac{d B_{O y^{\prime}}}{d \theta}=0$ gives (11.13.6). So extreme values of $A_{O x^{\prime}}, B_{O y^{\prime}}$ are already attained in (11.13.12) and (11.13.14) for $\theta$ given by (11.13.7).

### 11.14 Euler's Dynamical Equations for the Motion of a Rigid Body About a Fixed Point

Consider a rigid body of mass $m$ rotating about $O C$ axis through $O$, with angular velocity $\vec{\omega}$. Let the axes are principal axes. Using angular momentum vector (11.11.15), in the


Figure 11.27: A body is rotating about $O C$ axis
operator equation (??)

$$
\begin{equation*}
\frac{d \vec{L}}{d t}=\frac{\partial \vec{L}}{\partial t}+\vec{\omega} \times \vec{L} \tag{11.14.1}
\end{equation*}
$$

Since $\frac{d \vec{L}}{d t}=\vec{\tau}$, is the torque acting on the body about $O$. And

$$
\begin{aligned}
\vec{\omega} \times \vec{L} & =\left|\begin{array}{ccc}
\hat{i} & \hat{j} & \hat{k} \\
\omega_{x} & \omega_{y} & \omega_{z} \\
A^{*} \omega_{x} & B^{*} \omega_{y} & C^{*} \omega_{z}
\end{array}\right| \\
& =\left\langle-\left(B^{*}-C^{*}\right) \omega_{y} \omega_{z},-\left(C^{*}-A^{*}\right) \omega_{x} \omega_{y},-\left(A^{*}-B^{*}\right) \omega_{x} \omega_{y}\right\rangle
\end{aligned}
$$

Also

$$
\frac{\partial}{\partial t}\left\langle L_{x}, L_{y}, L_{z}\right\rangle=\left\langle A^{*} \dot{\omega}_{x}, B^{*} \dot{\omega}_{y}, C^{*} \dot{\omega}_{z}\right\rangle
$$

Then (11.14.1) becomes

$$
\left(\begin{array}{c}
\tau_{x}  \tag{11.14.2}\\
\tau_{y} \\
\\
\tau_{z}
\end{array}\right)=\left(\begin{array}{c}
A^{*} \dot{\omega}_{x}-\left(B^{*}-C^{*}\right) \omega_{y} \omega_{z} \\
B^{*} \dot{\omega}_{y}-\left(C^{*}-A^{*}\right) \omega_{x} \omega_{y} \\
\\
C^{*} \dot{\omega}_{z}-\left(A^{*}-B^{*}\right) \omega_{x} \omega_{y}
\end{array}\right)
$$

(11.14.2) are known as Euler's dynamical equations of motion.

If no force is acting the rigid body, then there is no torque and hence

$$
\begin{equation*}
\vec{\tau}=\left\langle\tau_{x}, \tau_{y}, \tau_{z}\right\rangle=0 \tag{11.14.3}
\end{equation*}
$$

then Euler's dynamical equations become

$$
\left.\begin{array}{l}
A^{*} \dot{\omega}_{x}-\left(B^{*}-C^{*}\right) \omega_{y} \omega_{z}=  \tag{11.14.4}\\
B^{*} \dot{\omega}_{y}-\left(C^{*}-A^{*}\right) \omega_{x} \omega_{y}= \\
C^{*} \dot{\omega}_{z}-\left(A^{*}-B^{*}\right) \omega_{x} \omega_{y}=
\end{array}\right\}
$$

### 11.15 Principle of Gyroscopic Compass

If a rigid body rotates about a fixed point under no force (torque free body) with constant angular velocity, once the instantaneous axis of rotation coincides with a principal axis and rotation about this axis is continuous .
Since no force is acting, then (11.14.1) becomes

$$
\begin{equation*}
\frac{\partial \vec{L}}{\partial t}+\vec{\omega} \times \vec{L}=0 \tag{11.15.1}
\end{equation*}
$$

Also the rotation is about a principal axis ( $\vec{\omega}$ is parallel to $\vec{L}$ )

$$
\vec{\omega} \times \vec{L}=0
$$

then (11.15.1) becomes

$$
\begin{equation*}
\frac{\partial \vec{L}}{\partial t}=0 \tag{11.15.2}
\end{equation*}
$$

Integrating (11.15.2)

$$
\vec{L}=C(\text { constant })
$$

Hence $\vec{L}$ is fixed relative to the frame of principal axis through the point of rotation. Thus a wheel rotating about its axle, tends to continue its motion. This is the principle of

Gyroscopic Compass.
When the angular velocity is constant, then

$$
\begin{equation*}
\overrightarrow{\dot{\omega}}=\left\langle\dot{\omega}_{x}, \dot{\omega}_{y}, \dot{\omega}_{z}\right\rangle=0 \tag{11.15.3}
\end{equation*}
$$

Then 11.15.4 becomes

$$
\begin{aligned}
\left(B^{*}-C^{*}\right) \omega_{y} \omega_{z} & =0 \\
\left(C^{*}-A^{*}\right) \omega_{x} \omega_{y} & =0 \\
\left(A^{*}-B^{*}\right) \omega_{x} \omega_{y} & =0
\end{aligned}
$$

or

$$
\begin{aligned}
\omega_{y} \omega_{z} & =0 \\
\omega_{x} \omega_{y} & =0 \\
\omega_{x} \omega_{y} & =0
\end{aligned}
$$

It means, any two components are zero, so the instantaneous axis of rotation coincides with a principal axis.
Conversely when the instantaneous axis of rotation coincides with a principal axis, then

$$
A^{*}=B^{*}=C^{*}=I
$$

and 11.15.4 becomes

$$
\begin{aligned}
I \dot{\omega}_{x} & =0 \\
I \dot{\omega}_{y} & =0 \\
I \dot{\omega}_{z} & =0
\end{aligned}
$$

or

$$
\begin{aligned}
& \omega_{x}=C_{1} \text { (constant) } \\
& \omega_{y}=C_{2} \text { (constant) } \\
& \omega_{z}=C_{3} \text { (constant) }
\end{aligned}
$$

Hence $\vec{\omega}=$ constant, and the body rotates about a fixed point under no force with constant angular velocity.

### 11.16 Momental Ellipsoid

Consider a system of $n$ particles rotating about an axis $O C$ through $O$ with angular velocity $\vec{\omega}$. Let $\hat{a}$ be a unit vector in the direction of $O C$ axis having direction cosines $\lambda, \mu, \nu$. Then

$$
\begin{equation*}
\hat{a}=\langle\lambda, \mu, \nu\rangle \tag{11.16.1}
\end{equation*}
$$

Let a particle of mass $m_{i}$ lying at $P$ on $O C$ axis, having position vector $\vec{r}_{i}$. Then

$$
\begin{equation*}
\overrightarrow{O P}=\vec{r}_{i}=\left\langle x_{i}, y_{i}, z_{i}\right\rangle \tag{11.16.2}
\end{equation*}
$$

Also $\overrightarrow{O P}=\vec{r}_{i}$ is in the direction of $\hat{a}$, using (11.16.1) and $|\overrightarrow{O P}|=r_{i}, \overrightarrow{r_{i}}$ can also be written as

$$
\begin{equation*}
\overrightarrow{O P}=\vec{r}_{i}=r_{i}\langle\lambda, \mu, \nu\rangle \tag{11.16.3}
\end{equation*}
$$

From (11.16.2) and (11.16.3), we can write


Figure 11.28: Momental Ellipsoid

$$
\begin{equation*}
\lambda=\frac{x_{i}}{r_{i}}, \mu=\frac{y_{i}}{r_{i}} \text { and } \nu=\frac{z_{i}}{r_{i}} \tag{11.16.4}
\end{equation*}
$$

Then by (11.9.6) the moment of inertia of the body about $O C$ axis (M.I. about an instantaneous axis) is

$$
\begin{equation*}
I_{O C}=I=A \lambda^{2}+B \mu^{2}+C \nu^{2}-2 D \mu \nu-2 E \lambda \nu-2 F \lambda \mu \tag{11.16.5}
\end{equation*}
$$

Now let $P$ moves in such a way that $I r_{i}^{2}$ remains constant, then from (11.16.4), (11.16.5) we can write as

$$
A x_{i}^{2}+B y_{i}^{2}+C z_{i}^{2}-2 D y_{i} z_{i}-2 E z_{i} x_{i}-2 F x_{i} y_{i}=I r_{i}^{2} \text { (constant) }
$$

Let $P$ has coordinates $(x, y, z)$, then

$$
\begin{equation*}
A x^{2}+B y^{2}+C z^{2}-2 D y z-2 E z x-2 F x y=I r^{2} \tag{11.16.6}
\end{equation*}
$$

Since $A, B, C$ are positive quantities, so (11.16.6) represents an ellipsoid known as momental ellipsoid.

### 11.17 Examples

In this section we will present some examples about above concepts. we can divide it into 3 categories depending upon the dimensions of the systems.

### 11.18 One Dimensional Systems

Example 11.18.1. A rigid body consisting of two particles of mass $m$ connected by a massless rod of length $2 a$. Find the moment of inertia about an axis through the center of mass and perpendicular to the rod.

Solution: The system is shown the fig. Let $A B$ be the axis passing through the center of mass. Then each particle is at a distance $a$ from the line $A B$ The moment of inertia of the system about $A B$ axis is

$$
\begin{aligned}
I & =I_{1}+I_{2} \\
& =m a^{2}+m a^{2} \\
& =2 m a^{2}
\end{aligned}
$$



Figure 11.29: M.I of a system of particles

Example 11.18.2. Find moment of inertia of a uniform rod of mass $m$ lying along $x$-axis with one end at origin having length a about
(a) an axis passing through one end and perpendicular to the rod.
(b) Coordinate axes.
(c) finding products of inertia, hence complete inertia matrix.

Solution: Let $m$ be the mass of rod of length $a$ and $L M$ (parallel to $y$ axis) be the axis of rotation passing through one end and origin $O$ and perpendicular to the rod.
Consider a small element mass $d m$ of width $d x$ at a distance $x$ from $L M$ axis. Since the


Figure 11.30: rod of length a
rod is uniform, the mass per unit length is a constant,

$$
\begin{align*}
\rho & =\frac{d m}{d l}=\frac{m_{\text {total }}}{l} \\
& =\frac{d m}{d x}=\frac{m}{a} \tag{11.18.1}
\end{align*}
$$

or the small element mass is

$$
\begin{equation*}
d m=\frac{m}{a} d x \tag{11.18.2}
\end{equation*}
$$

Hence the moment of inertia (M.I.) of small element about $L M$ axis is

$$
d I_{L M}=\frac{m}{a} d x x^{2}
$$

(a) an axis passing through one end and perpendicular to the rod.

The M.I. of rod about $L M$ axis is

$$
\begin{aligned}
& I_{L M}=\int_{0}^{a} \frac{m}{a} x^{2} d x \\
& I=\frac{m}{a}\left[\frac{x^{3}}{3}\right]_{0}^{a} \\
& \quad=\frac{m}{a} \frac{(a)^{3}}{3}=\frac{1}{3} m a^{2}
\end{aligned}
$$

Hence moment of inertia about an axis passing through one end and perpendicular to the rod is

$$
\begin{equation*}
I_{L M}=\frac{1}{3} m a^{2} \tag{11.18.3}
\end{equation*}
$$

(b) Coordinate axes.

In (a) $x$ axis is along the rod, see Fig 11.30. Then the distance of mass element $d m$ from $x$ axis is zero, so its moment of inertia about $x$ axis is zero. Hence the moment of inertia of whole mass about $x$ axis is

$$
\begin{equation*}
A=I_{x x}=m(0)^{2}=0 \tag{11.18.4}
\end{equation*}
$$

Here $y$ and $z$ axes are perpendicular to the rod, so mass $m$ has same moment of inertia about both axes. In (a) $L M$ axis, the axis of rotation is taken along $y$ axis, so moment of inertia about $y$ axis

$$
B=I_{y y}=\frac{1}{3} m a^{2}
$$

and about $z$ axis

$$
C=I_{z z}=\frac{1}{3} m a^{2}
$$

(c) Products of inertia and inertia matrix.

Since the body is one dimensional, so $y=0=z$. Hence the products of inertia w.r.t. pair of axes (oy,oz), (oz,ox) and (ox,oy) respectively are as under

$$
\begin{aligned}
D & =\iiint_{V} \rho y z d V=0 \\
E & =\iiint_{V} \rho z x d V=0 \\
F & =\iiint_{V} \rho x y d V=0
\end{aligned}
$$

Hence the inertia matrix for (a) is

$$
[I]=\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & \frac{1}{3} m a^{2} & 0 \\
0 & 0 & \frac{1}{3} m a^{2}
\end{array}\right)
$$

The radius of gyration about axis of rotation can be calculated by using (11.4.3). First about $x$ axis is

$$
K_{x}=\sqrt{\frac{I_{x x}}{m}}=0
$$

and about $y$ axis is

$$
K_{y}=\sqrt{\frac{I_{y y}}{m}}=\frac{1}{\sqrt{3}} a
$$

finally about $z$ axis is

$$
K_{z}=\sqrt{\frac{I_{z z}}{m}}=\frac{1}{\sqrt{3}} a
$$

Example 11.18.3. Find moment of inertia of a uniform rod of mass m lying along $x$-axis with center at origin having length a about
(a) an axis passing through center and perpendicular to the rod.
(b) Coordinate axes.
(c) finding products of inertia, hence complete inertia matrix.

Solution: Let $m$ be the mass of rod of length $a$ and $L M$ (parallel to $y$ axis) be the axis of rotation passing through one end and origin $O$ and perpendicular to the rod.
Consider a small element mass $d m$ of width $d x$ at a distance $x$ from $L M$ axis. Since the


Figure 11.31: Axis of rotation passing through center and perpendicular to rod
rod is uniform, the mass per unit length is a constant,

$$
\begin{align*}
\rho & =\frac{d m}{d l}=\frac{m_{\text {total }}}{l} \\
& =\frac{d m}{d x}=\frac{m}{a} \tag{11.18.5}
\end{align*}
$$

or the small element mass is

$$
\begin{equation*}
d m=\frac{m}{a} d x \tag{11.18.6}
\end{equation*}
$$

Hence the moment of inertia (M.I.) of small element about $L M$ axis is

$$
d I_{L M}=\frac{m}{a} d x x^{2}
$$

(a) and the moment of inertia of rod about $L M$ axis is

$$
\begin{gathered}
I_{L M}=\int_{-\frac{a}{2}}^{\frac{a}{2}} \frac{m}{a} x^{2} d x \\
I_{L M}=\frac{m}{a}\left[\frac{x^{3}}{3}\right]_{-\frac{a}{2}}^{\frac{a}{2}} \\
=\frac{m}{a} \frac{1}{3}\left[\left(\frac{a}{2}\right)^{3}+\left(\frac{a}{2}\right)^{3}\right] \\
=\frac{1}{12} m a^{2}
\end{gathered}
$$

Hence moment of inertia about an axis passing through center and perpendicular to the rod is

$$
\begin{equation*}
I_{L M}=\frac{1}{12} m a^{2} \tag{11.18.7}
\end{equation*}
$$

(b) In (a) $x$ axis is along the rod, see Fig 11.31. Then the distance of mass element $d m$ from $x$ axis is zero, so its moment of inertia about $x$ axis is zero. Hence the moment of inertia of whole mass about $x$ axis is

$$
\begin{equation*}
A=I_{x x}=m(0)^{2}=0 \tag{11.18.8}
\end{equation*}
$$

Here $y$ and $z$ axes are perpendicular to the rod, so mass $m$ has same moment of inertia about both axes. In (a) $L M$ axis, the axis of rotation is taken along $y$ axis, so moment of inertia about $y$ axis

$$
B=I_{y y}=\frac{1}{12} m a^{2}
$$

and about $z$ axis

$$
C=I_{z z}=\frac{1}{12} m a^{2}
$$

(c) Since the body is one dimensional, so $y=0=z$. Hence the products of inertia w.r.t. pair of axes $(o y, o z),(o z, o x)$ and $(o x, o y)$ respectively are as under

$$
\begin{aligned}
D & =\int_{l} \rho y z d l=0 \\
E & =\int_{l} \rho z x d l=0 \\
F & =\int_{l} \rho x y d l=0
\end{aligned}
$$

Hence the inertia matrix for (a) is

$$
[I]=\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & \frac{1}{12} m a^{2} & 0 \\
0 & 0 & \frac{1}{12} m a^{2}
\end{array}\right)
$$

Example 11.18.4. Show that a uniform rod of mass $m$ is equimomental to three particles situated one at each end of the rod and one at its middle point, the masses of the particle being $\frac{1}{6} m, \frac{1}{6} m$ and $\frac{2}{3} m$ respectively.

Solution: Let $m$ be the mass of $\operatorname{rod} A B$ of length $2 a$ and $C D$ be the perpendicular to $A B$ passing through middle and centroid $G$ of it. This is the first system.
Let $\frac{1}{6} m, \frac{1}{6} m$ and $\frac{2}{3} m$ are the masses at $A, G, B$ respectively. This is the second system. Its total mass is

$$
\frac{1}{6} m+\frac{1}{6} m+\frac{2}{3} m=m
$$

1. Both systems have same masses.
2. Both systems have same centroid $G$.

Both systems are one dimensional, so we consider moment of inertia about $A B$ axis. For this see above example.
3. Both systems have the same moment of inertia (i.e. each zero) about $A B$ axis, passing through common centroid $G$.


Figure 11.32: Equimomental systems

Hence all the three conditions are satisfied and the systems are equimomental Two systems are said to be equimomental if they have equal moment of inertia about every line in space.

Example 11.18.5. Moment of inertia of a uniform rod of mass $m$ and length $2 a$ about an axis passing through one end and making an angle $\theta$ with the rod.

Solution: Let $m$ be the mass of rod of length $2 a$ and $O A$ be the axis of rotation passing through one end and origin $O$, making an angle $\theta$ with the rod. Consider a small element mass $d m$ of width $d x$ at a distance $x$ from $O$ axis. Then its distance from the axis $O A$ is $d=x \sin \theta$ (see Fig. 11.33). Since the rod is uniform, the mass per unit length is a constant,


Figure 11.33: Axis of rotation passing through center and perpendicular to rod

$$
\begin{aligned}
\rho & =\frac{d m}{d l}=\frac{m_{\text {total }}}{l} \\
& =\frac{d m}{d x}=\frac{m}{a}
\end{aligned}
$$

or the small element mass is

$$
d m=\frac{m}{2 a} d x
$$

Hence the moment of inertia (M.I.) of small element about $O A$ axis is

$$
\begin{aligned}
d I_{O A} & =\frac{m}{2 a} d x d^{2} \\
& =\frac{m}{2 a} d x(x \sin \theta)^{2}
\end{aligned}
$$

and the M.I. of rod about $O A$ is

$$
\begin{aligned}
I & =\int_{0}^{2 a} \frac{m}{2 a}(x \sin \theta)^{2} d x \\
& =\frac{m}{2 a}\left[\frac{x^{3}}{3}\right]_{0}^{2 a} \sin ^{2} \theta \\
& =\frac{m}{2 a} \frac{(2 a)^{3}}{3} \sin ^{2} \theta=\frac{4}{3} m a^{2} \sin ^{2} \theta
\end{aligned}
$$

Hence

$$
\begin{equation*}
I_{O A}=\frac{4}{3} m a^{2} \sin ^{2} \theta \tag{11.18.9}
\end{equation*}
$$

### 11.19 Two Dimensional Systems

In this section we will discuss the above concepts for two dimensional systems. We can divide it two parts.

- System in Cartesian coordinate system.
- System in polar coordinate system.


### 11.19.1 System in Cartesian Coordinate System

Example 11.19.1. A square of side a has particles of masses $m, 2 m, 3 m, 4 m$ at its vertices. Show that the principal moment of inertia at center of the square are $2 m a^{2}, 3 m a^{2}, 5 m a^{2}$. Also find the directions of principal axes.

## Solution

Let us take an $x y$-coordinate system $O x y$ and $A B C D$ a square of side $a$ with center at origin $O$. The coordinates of points are $O(0,0), A\left(-\frac{a}{2},-\frac{a}{2}\right), B\left(\frac{a}{2},-\frac{a}{2}\right), C\left(-\frac{a}{2}, \frac{a}{2}\right)$ and $D\left(\frac{a}{2}, \frac{a}{2}\right)$. The particles of masses $m, 2 m, 3 m, 4 m$ are at $A, B, C$ and $D$ respectively. See


Figure 11.34: Four particles system

Fig. 11.35, the square is laminas in $x y$ plane, with $z=0$.
(a) Moments of Inertia about coordinate axes

Using (11.6.10) the moment of inertia about coordinate axes are calculated. First about
$x$ axis is

$$
\begin{aligned}
I_{x x}=A & =\sum_{i=1}^{n} m_{i} y_{i}^{2} \\
& =m_{1} y_{1}^{2}+m_{2} y_{2}^{2}+m_{3} y_{3}^{2}+m_{4} y_{4}^{2} \\
& =m\left(-\frac{a}{2}\right)^{2}+2 m\left(-\frac{a}{2}\right)^{2}+3 m\left(\frac{a}{2}\right)^{2}+4 m\left(\frac{a}{2}\right)^{2} \\
& =m \frac{a^{2}}{4}(1+2+3+4) \\
& =\frac{5}{2} m a^{2}
\end{aligned}
$$

Similarly about $y$ axis is

$$
I_{y y}=B=\frac{5}{2} m a^{2}
$$

Finally about z axis can be calculated by using perpendicular axis theorem

$$
\begin{aligned}
I_{z z}=C & =I_{x x}+I_{y y} \\
& =\frac{5}{2} m a^{2}+\frac{5}{2} m a^{2} \\
& =5 m a^{2}
\end{aligned}
$$

## (b) Products of Inertia

The products of inertia w.r.t. pair of axes $(o y, o z),(o z, o x)$ and $(o x, o y)$ are calculated by using (11.6.11) respectively as under

$$
\begin{aligned}
D & =0 \\
E & =0 \\
F & =\sum_{i=1}^{n} m_{i} x_{i} y_{i} \\
& =m_{1} x_{1} y_{1}+m_{2} x_{2} y_{2}+m_{3} x_{3} y_{3}+m_{4} x_{4} y_{4} \\
& =m\left(-\frac{a}{2}\right)\left(-\frac{a}{2}\right)+2 m\left(\frac{a}{2}\right)\left(-\frac{a}{2}\right)+3 m\left(\frac{a}{2}\right)\left(\frac{a}{2}\right)+4 m\left(\frac{a}{2}\right)\left(-\frac{a}{2}\right) \\
& =m \frac{a^{2}}{4}(1-2+3-4) \\
& =-\frac{1}{2} m a^{2}
\end{aligned}
$$

(c) Inertia matrix

The inertia matrix is

$$
[I]=\left(\begin{array}{ccc}
\frac{5}{2} m a^{2} & \frac{1}{2} m a^{2} & 0 \\
\frac{1}{2} m a^{2} & \frac{5}{2} m a^{2} & 0 \\
0 & 0 & 5 m a^{2}
\end{array}\right)
$$

## (d) Principal axes

The first principal axis can be determined by using (11.13.12)

$$
\begin{aligned}
A_{O x^{\prime}} & =\frac{1}{2}\left[(A+B)+\sqrt{4 F^{2}+(B-A)^{2}}\right] \\
& =\frac{1}{2}\left[\left(\frac{5}{2} m a^{2}+\frac{5}{2} m a^{2}\right)+\sqrt{4\left(\frac{1}{2} m a^{2}\right)^{2}+\left(\frac{5}{2} m a^{2}-\frac{5}{2} m a^{2}\right)^{2}}\right] \\
& =\frac{1}{2}\left[5 m a^{2}+m a^{2}\right] \\
& =3 m a^{2}
\end{aligned}
$$

The second principal axis can be determined by using (11.13.14)

$$
\begin{aligned}
B_{O y^{\prime}} & =\frac{1}{2}\left[(A+B)-\sqrt{4 F^{2}+(B-A)^{2}}\right] \\
& =\frac{1}{2}\left[\left(\frac{5}{2} m a^{2}+\frac{5}{2} m a^{2}\right)-\sqrt{4\left(\frac{1}{2} m a^{2}\right)^{2}+\left(\frac{5}{2} m a^{2}-\frac{5}{2} m a^{2}\right)^{2}}\right] \\
& =\frac{1}{2}\left[5 m a^{2}-m a^{2}\right] \\
& =2 m a^{2}
\end{aligned}
$$

The third principal axis can be determined by using (11.13.15)

$$
\begin{aligned}
C_{O z^{\prime}} & =A_{O x^{\prime}}+B_{O y^{\prime}} \\
& =3 m a^{2}+2 m a^{2} \\
& =5 m a^{2}
\end{aligned}
$$

is the moment of inertia about zaxis

## (f) Directions of Principle axes

Directions of Principle axes can be calculated by using (11.13.7)

$$
\begin{align*}
\theta & =\frac{1}{2} \arctan \left(\frac{2 F}{B-A}\right) \\
& =\frac{1}{2} \arctan \left(\frac{2\left(\frac{1}{2} m a^{2}\right)}{\left(\frac{5}{2} m a^{2}-\frac{5}{2} m a^{2}\right)}\right) \\
& =\frac{1}{2} \arctan (\infty) \\
& =\frac{1}{2}\left(\frac{\pi}{2}\right) \\
& =\frac{\pi}{4} \tag{11.19.1}
\end{align*}
$$

(11.19.1) is the direction of principal axes relative to co-ordinates axes.


Figure 11.35: rectangular lamina

Example 11.19.2. Moment of inertia of a rectangular lamina about an axis (line) passing through center and parallel to one side.

## Solution

(a) Moment of inertia about $x$ axis

Let $A B C D$ be a rectangular lamina of mass $m$ and $L M$ parallel to $A B$ be the line about which moment of inertia is to be calculated. Let $A B=2 a$ and $A C=2 b$, then area of lamina is $4 a b$
Consider a small element of surface area $d A=d x d y$ at a distance $y$ from $L M$ axis ( $x$ axis). Since the lamina is uniform, the density of the lamina (the mass per unit area) is a constant


Figure 11.36: rectangular lamina

$$
\begin{aligned}
\rho & =\frac{\text { mass }_{\text {total }}}{\text { area }_{\text {total }}}=\frac{d m}{d A} \\
& =\frac{m}{A}=\frac{d m}{d A}
\end{aligned}
$$

Mass of small element (small rectangle) is

$$
d m=\frac{m}{A} d A
$$

Hence the moment of inertia of small element about $L M$ axis is

$$
\begin{aligned}
d I & =d m y^{2} \\
& =y^{2} \frac{m}{4 a b} d y d x
\end{aligned}
$$

Using (11.2.6), the moment of inertia of rectangular lamina about $L M$ is

$$
\begin{aligned}
I_{L M} & =\int_{-a}^{a} \int_{-b}^{b} y^{2} \frac{m}{4 a b} d y d x \\
& =\frac{m}{4 a b} \int_{-a}^{a}\left[\frac{y^{3}}{3}\right]_{-b}^{b} d x \\
& =\frac{m}{4 a b} \frac{2 b^{3}}{3}[x]_{-a}^{a} \\
& =\frac{m b^{2}}{3}
\end{aligned}
$$

Since $L M$ axis is along $x$ axis, so moment of inertia about $x$ axis is

$$
I_{x x}=\frac{m b^{2}}{3}
$$

## Second Approach

(b) Moment of inertia about $y$ axis

Let $L M$ parallel to $A C$ be the line about which moment of inertia is to be calculated. Consider an elementary strip $P Q$ of length $(B C=2 b)$ and breadth $d x$ at a distance $x$ from $L M$ - axis. Then area of the strip is $d A=2 b d x$


Figure 11.37: rectangular lamina

Mass of the strip $=\frac{m}{4 a b} 2 b d x=\frac{m}{2 a} d x$
M.I. of small strip about $L M$ is $d I=x^{2}$ (mass of the strip)

$$
d I=\frac{m}{2 a} x^{2} d x
$$

M.I. of rectangular lamina about $L M$

$$
\begin{aligned}
I & =\frac{m}{2 a} \int_{-a}^{a} x^{2} d x \\
& =\frac{m}{2 a} \frac{2 a^{3}}{3} \\
& =\frac{m a^{2}}{3}
\end{aligned}
$$

Since $L M$ axis is along $y$ axis, so moment of inertia about $y$ axis is

$$
I_{y y}=\frac{m a^{2}}{3}
$$

(c) Moment of inertia about $z$ axis

Here $z$ axis is perpendicular to lamina with center at origin. Hence moment of inertia of rectangular lamina about a line perpendicular to lamina and passing through center is same.
Let $O L$ be the axis of rotation passing through center $O$ and perpendicular to lamina $A B C D$. Let $A B=2 a$ and $A C=2 b$ area of lamina is $4 a b$
Mass per unit area of lamina $=\frac{m}{4 a b}$ Consider a small element of surface area $d A=d x d y$ at a distance $d$ from OL axis
Also the density of the lamina is $\rho=\frac{m}{4 a b}$
Mass of small element (rectangle) $=\rho d A=\frac{m}{4 a b} d y d x$


Figure 11.38: rectangular lamina

Here perpendicular distance of small element $d m$ from $O L$ axis is

$$
d=\sqrt{x^{2}+y^{2}}
$$

M.I. of small rectangle about $O L$ is

$$
\begin{aligned}
d I & =d m d^{2} \\
& =\left(x^{2}+y^{2}\right) \frac{m}{4 a b} d y d x
\end{aligned}
$$

M.I. of rectangular lamina about $O L$ is

$$
\begin{aligned}
I & =\frac{m}{4 a b} \int_{-a}^{a} \int_{-b}^{b}\left(x^{2}+y^{2}\right) d y d x \\
& =\frac{m}{4 a b} 4 \int_{0}^{a} \int_{0}^{b}\left(x^{2}+y^{2}\right) d y d x \\
& =\frac{m\left(a^{2}+b^{2}\right)}{3}
\end{aligned}
$$

Since $L M$ axis is along $z$ axis, so moment of inertia about $z$ axis is

$$
I_{z z}=\frac{m\left(a^{2}+b^{2}\right)}{3}
$$

## Second Approach - Perpendicular axes theorem

Since $x, y$ and $z$ axes are mutually perpendicular axes. $I_{z z}$ can be calculated as

$$
\begin{aligned}
I_{z z} & =I_{x x}+I_{y y} \\
& =\frac{m b^{2}}{3}+\frac{m a^{2}}{3} \\
& =\frac{1}{3} m\left(a^{2}+b^{2}\right)
\end{aligned}
$$

## (d) Products of Inertia

Since the lamina is two dimensional body,in $x y$ plane, so $z=0$. Hence the products of inertia w.r.t. pair of axes $(o y, o z),(o z, o x)$ and $(o x, o y)$ respectively are as under

$$
\begin{aligned}
D & =\iint_{A} \rho y z d A=0 \\
E & =\iint_{A} \rho z x d A=0 \\
F & =\iint_{A} \rho x y d A \\
& =\frac{m}{4 a b} \int_{-a}^{a} \int_{-b}^{b} x y d y d x \\
& =\frac{m}{4 a b}\left|\frac{x^{2}}{2}\right|_{-a}^{a} \int_{-b}^{b} y d y \\
& =0
\end{aligned}
$$

## (e) Inertia Matrix

Hence the inertia matrix is

$$
[I]=\left(\begin{array}{ccc}
\frac{1}{3} m b^{2} & 0 & 0 \\
0 & \frac{1}{3} m a^{2} & 0 \\
0 & 0 & \frac{1}{3} m\left(a^{2}+b^{2}\right)
\end{array}\right)
$$

## (f) Directions Principle axes

Since the products of inertia are zero, hence coordinate axes are the principle axes.
(g) Radius of gyration

The radius of gyration about axis of rotation can be calculated by using (11.4.3). First about $x$ axis is

$$
K_{x}=\sqrt{\frac{I_{x x}}{m}}=\frac{1}{\sqrt{3}} b
$$

and about $y$ axis is

$$
K_{y}=\sqrt{\frac{I_{y y}}{m}}=\frac{1}{\sqrt{3}} a
$$

finally about $z$ axis is

$$
K_{z}=\sqrt{\frac{I_{z z}}{m}}=\frac{\sqrt{a^{2}+b^{2}}}{\sqrt{3}}
$$

Example 11.19.3. Moment of inertia of a rectangular lamina about an axis (line) passing through one end.

## Solution

(a) Moment of inertia about $x$ axis

Let $O A B C$ be a rectangular lamina of mass $m$ and $O A$ (along $x$ axis) be the line about which moment of inertia is to be calculated. Let $O A=2 a$ and $B C=2 b$ Area of lamina is

$$
A=4 a b
$$

Mass per unit area of lamina $=\frac{m}{4 a b}$ Consider a small element of surface area $d A=d x d y$ at a distance $y$ from $x$ axis Also the density of the lamina is $\rho=\frac{m}{4 a b}$


Figure 11.39: rectangular lamina

Mass of small element (rectangle) $=\rho d A=\frac{m}{4 a b} d y d x$ M.I. of small rectangle about $L M d I=$ $y^{2}$ (mass of the small element)

$$
d I=y^{2} \frac{m}{4 a b} d y d x
$$

Using (11.2.6) the M.I. of rectangular lamina about $x$ axis

$$
\begin{align*}
I_{x x} & =\int_{0}^{2 a} \int_{0}^{2 b} y^{2} \frac{m}{4 a b} d y d x \\
& =\frac{m}{4 a b} \int_{0}^{2 a}\left[\frac{y^{3}}{3}\right]_{0}^{2 b} d x \\
& =\frac{m}{4 a b} \frac{8 b^{3}}{3}[x]_{0}^{2 a} \\
& =\frac{4}{3} m b^{2} \tag{11.19.2}
\end{align*}
$$

## Second Approach - Parallel axes theorem

Since the lamina has uniform distribution of mass, center of mass coincides with origin. Hence $x$ axis is the axis passing through center of mass and $L M$ axis is parallel to it. The distance between axes is $d=b$. Using Parallel axes theorem, $I_{L M}$ can be calculated as


Figure 11.40: rectangular lamina

$$
\begin{aligned}
I_{L M} & =I_{x x}+m d^{2} \\
& =\frac{m b^{2}}{3}+m b^{2} \\
& =\frac{4}{3} m b^{2}
\end{aligned}
$$

(b) Moment of inertia about $y$ axis

$$
\begin{equation*}
I_{y y}=\frac{4}{3} m a^{2} \tag{11.19.3}
\end{equation*}
$$

(c) Moment of inertia about $z$ axis

To find moment of inertia about $z$ axis, we can use perpendicular axis theorem.

$$
\begin{align*}
I_{z z} & =I_{x x}+I_{y y} \\
& =\frac{4}{3} m b^{2}+\frac{4}{3} m a^{2} \\
& =\frac{4}{3} m\left(a^{2}+b^{2}\right) \tag{11.19.4}
\end{align*}
$$

## (d) Products of inertia

Since the lamina is two dimensional body, in $x y$ plane, so $z=0$. Hence the products of inertia w.r.t. pair of axes $(o y, o z),(o z, o x)$ and $(o x, o y)$ respectively are as under

$$
\begin{aligned}
D & =\iint_{A} \rho y z d A=0 \\
E & =\iint_{A} \rho z x d A=0 \\
F & =\iint_{A} \rho x y d A \\
& =\frac{m}{4 a b} \int_{0}^{2 a} \int_{0}^{2 b} x y d y d x \\
& =\frac{m}{4 a b}\left|\frac{x^{2}}{2}\right|_{0}^{2 a} \int_{0}^{2 b} y d y \\
& =\frac{m}{4 a b} \frac{4 a^{2}}{2} \frac{4 b^{2}}{2} \\
& =m a b
\end{aligned}
$$

## (e) Inertia matrix

The inertia matrix is

$$
[I]=\left(\begin{array}{ccc}
\frac{4}{3} m b^{2} & -m a b & 0 \\
-m a b & \frac{4}{3} m a^{2} & 0 \\
0 & 0 & \frac{4}{3} m\left(a^{2}+b^{2}\right)
\end{array}\right)
$$

## (f) Directions of Principle axes

Directions of Principle axes can be calculated by using (11.13.7)

$$
\begin{align*}
\theta & =\frac{1}{2} \arctan \left(\frac{2 F}{B-A}\right) \\
& =\frac{1}{2} \arctan \left(\frac{2 m a b}{\left(\frac{4}{3} m a^{2}\right)-\left(\frac{4}{3} m b^{2}\right)}\right) \\
& =\frac{1}{2} \arctan \left(\frac{3 a b}{a^{2}-b^{2}}\right) \tag{11.19.5}
\end{align*}
$$

(11.19.5) is the direction of principal axes relative to co-ordinates axes. Note For a square


Figure 11.41: rectangular lamina
of side $a$,

$$
\begin{align*}
\theta & =\frac{1}{2} \arctan \left(\frac{3 a a}{a^{2}-a^{2}}\right) \\
& =\frac{1}{2} \arctan (\infty)=\frac{1}{2} \frac{\pi}{2} \\
& =\frac{\pi}{4} \tag{11.19.6}
\end{align*}
$$

is the direction of principal axes relative to co-ordinates axes.

### 11.19.2 Moment of Inertia of a Uniform Triangular Disc (Lamina)

Consider $A B C$ a thin uniform triangular disc of mass $m$ in $x y$ plane with base along $x$ axis of length $a$. Consider a strip $E F$ of mass $d m$, length $l$ and width $d y$ at a distance $y$ from $x$ axis, see Fig. 11.44. In similar triangles $A E F$ and $A B C$


Figure 11.42: Uniform triangular disc

$$
\begin{align*}
\frac{E F}{B C} & =\frac{A G}{A O} \\
\frac{l}{a} & =\frac{h-y}{h} \\
l & =\frac{a(h-y)}{h} \tag{11.19.7}
\end{align*}
$$

Consider a strip of infinitesimal width $d y$ and mass element $d m$ at a distance $y$ from $x$ axis show in the figure. The length element of mass element $d m$ is

$$
\begin{equation*}
d A=l d y \tag{11.19.8}
\end{equation*}
$$

using (11.19.7) in (11.19.8)

$$
\begin{equation*}
d A=\frac{a(h-y)}{h} d y \tag{11.19.9}
\end{equation*}
$$

Since the disc is uniform, the mass per unit area is a constant,

$$
\begin{align*}
\rho & =\frac{d m}{d A}=\frac{m_{\text {total }}}{A} \\
& =\frac{d m}{\frac{a(h-y)}{h} d y}=\frac{m}{\frac{a h}{2}} \tag{11.19.10}
\end{align*}
$$

From (11.19.10), we can write

$$
\begin{equation*}
d m=\rho d A=\frac{2 m(h-y)}{h^{2}} d y \tag{11.19.11}
\end{equation*}
$$

Now moment of inertia of mass element $d m$ about base ( $x$ axis) is

$$
\begin{aligned}
d I_{x x} & =d m y^{2} \\
& =\frac{2 m(h-y)}{h^{2}} d y y^{2} \\
& =\frac{2 m}{h^{2}}(h-y) y^{2} d y
\end{aligned}
$$

The moment of inertia of the disc about $x$ axis is now an integral from $y=0$ to $y=h$

$$
\begin{align*}
I_{x x} & =\frac{2 m}{h^{2}} \int_{0}^{h}\left(h y^{2}-y^{3}\right) d y \\
& =\frac{2 m}{h^{2}}\left|h \frac{y^{3}}{3}-\frac{y^{4}}{4}\right|_{0}^{h} \\
& =\frac{m h^{2}}{6} \tag{11.19.12}
\end{align*}
$$

### 11.19.3 Moment of Inertia of a Uniform Isosceles Triangular Disc (Lamina)

Consider $A B C$ an isosceles triangular disc of mass $m$ in $x y$ plane with its symmetric axis along the positive $x$ direction and one of its vertex at origin. Let $2 b$ its base and $a$ be its height (along $x$ axis). If the $z$ axis is the axis of rotation, passing through the origin (one vertex). The isosceles triangle can be regarded as the combination of the differential rod with the length $2 y$ and the differential width $d x$ (one dimensional) and consider a rod (strip) $E F$ of mass $d m$, at a distance $x$ from $z$ axis, see Fig. 11.44.
The moment of inertia of a rod of mass $m$ and length $a$ about an axis perpendicular to the rod and passing through the center of mass is given (see example 1 b )

$$
I=\frac{1}{12} m a^{2}
$$

Here

$$
y=\frac{b}{a} x
$$

Since the disc is uniform, the mass per unit area is a constant,


Figure 11.43: Uniform triangular disc

$$
\begin{align*}
\rho & =\frac{d m}{d A}=\frac{m_{\text {total }}}{A} \\
& =\frac{d m}{2 y d x}=\frac{m}{a b} \tag{11.19.13}
\end{align*}
$$

From (11.19.13), we can write

$$
\begin{equation*}
d m=\rho d A=\frac{2 m}{a^{2}} x d x \tag{11.19.14}
\end{equation*}
$$

(a) Moment of inertia about $z$ axis

Now moment of inertia of mass element $d m$ about an axis perpendicular to the rod and passing through the center of mass is

$$
\begin{aligned}
d I & =\frac{1}{12} d m(2 y)^{2} \\
& =\frac{m}{6 a^{2}} x d x 4 \frac{b^{2}}{a^{2}} x^{2} \\
& =\frac{2 m b^{2}}{3 a^{4}} x^{3} d x
\end{aligned}
$$

Using parallel axis theorem, the moment of inertia of mass element $d m$ about $z$ axis is

$$
\begin{aligned}
d I_{z z} & =d I+d m x^{2} \\
& =\frac{2 m b^{2}}{3 a^{4}} x^{3} d x+\frac{2 m}{a^{2}} x d x x^{2} \\
& =\frac{2 m}{3 a^{4}}\left(b^{2}+3 a^{2}\right) x^{3} d x
\end{aligned}
$$

The moment of inertia of the disc about $z$ axis is now an integral from $x=0$ to $x=a$

$$
\begin{align*}
I_{z z} & =\frac{2 m}{3 a^{4}}\left(b^{2}+3 a^{2}\right) \int_{0}^{a} x^{3} d x \\
& =\frac{2 m}{3 a^{4}}\left(b^{2}+3 a^{2}\right)\left|\frac{x^{4}}{4}\right|_{0}^{a} \\
& =\frac{m}{6 a^{4}}\left(b^{2}+3 a^{2}\right) a^{4} \\
& =\frac{1}{6} m b^{2}+\frac{1}{2} m a^{2} \tag{11.19.15}
\end{align*}
$$

(b) Moment of inertia about $x$ axis

Here again the same concept is used, the $x$ axis is perpendicular to rod (strip) $E F$ and passing through its center, so the moment of inertia of mass $d m$ about $x$ axis is

$$
\begin{aligned}
d I & =\frac{1}{12} d m(2 y)^{2} \\
& =\frac{m}{6 a^{2}} x d x 4 \frac{b^{2}}{a^{2}} x^{2} \\
& =\frac{2 m b^{2}}{3 a^{4}} x^{3} d x
\end{aligned}
$$

And the moment of inertia of mass $m$ about $x$ axis is

$$
\begin{aligned}
I_{x x} & =\frac{2 m b^{2}}{3 a^{4}} \int_{0}^{a} x^{3} d x \\
& =\frac{2 m b^{2}}{3 a^{4}}\left|\frac{x^{4}}{4}\right|_{0}^{a} \\
& =\frac{1}{6} m b^{2}
\end{aligned}
$$

(c) Moment of inertia about $y$ axis

In this case rod (strip) $E F$ is parallel to $y$ axis, so the moment of inertia of mass $d m$ about $y$ axis is

$$
\begin{aligned}
d I & =d m x^{2} \\
& =\frac{2 m}{a^{2}} x d x x^{2} \\
& =\frac{2 m}{a^{2}} x^{3} d x
\end{aligned}
$$

And the moment of inertia of mass $m$ about $y$ axis is

$$
\begin{aligned}
I_{y y} & =\frac{2 m}{a^{2}} \int_{0}^{a} x^{3} d x \\
& =\frac{2 m}{a^{2}}\left|\frac{x^{4}}{4}\right|_{0}^{a} \\
& =\frac{1}{2} m a^{2}
\end{aligned}
$$

Note: The moment of inertia about $z$ axis can also be calculated by using theorem of perpendicular axis.

$$
\begin{aligned}
I_{z z} & =I_{x x}+I_{y y} \\
& =\frac{1}{12} m b^{2}+\frac{1}{2} m a^{2}
\end{aligned}
$$

### 11.19.4 Moment of Inertia of a Uniform Equilateral Triangular Disc (Lamina)

The above triangle can be considered as equilateral triangle of length $l$ by taking

$$
l=2 b
$$

or

$$
b=\frac{l}{2}
$$

and

$$
\begin{aligned}
a & =\sqrt{l^{2}-b^{2}} \\
& =\sqrt{l^{2}-\left(\frac{l}{2}\right)^{2}} \\
& =\frac{\sqrt{3}}{2} l
\end{aligned}
$$

Then the moment of inertia about axes are
(a) Moment of inertia about $z$ axis

$$
\begin{align*}
I_{z z} & =\frac{1}{6} m b^{2}+\frac{1}{2} m a^{2} \\
& =\frac{1}{6} m\left(\frac{l}{2}\right)^{2}+\frac{1}{2} m\left(\frac{\sqrt{3}}{2} l\right)^{2} \\
& =\frac{1}{24} m l^{2}+\frac{3}{8} m l^{2} \\
& =\frac{5}{12} m l^{2} \tag{11.19.16}
\end{align*}
$$



Figure 11.44: Uniform equilateral triangular disc
(b) Moment of inertia about $x$ axis

The moment of inertia of mass $m$ about $x$ axis is

$$
\begin{align*}
I_{x x} & =\frac{1}{6} m b^{2} \\
& =\frac{1}{6} m\left(\frac{l}{2}\right)^{2} \\
& =\frac{1}{24} m l^{2} \tag{11.19.17}
\end{align*}
$$

(c) Moment of inertia about $y$ axis

The moment of inertia of mass $m$ about $y$ axis is

$$
\begin{aligned}
I_{y y} & =\frac{1}{2} m a^{2} \\
& =\frac{1}{2} m\left(\frac{\sqrt{3}}{2} l\right)^{2} \\
& =\frac{3}{8} m l^{2}
\end{aligned}
$$

### 11.20 Polar coordinates

In this section moment of inertia will be calculated by using polar coordinates.

### 11.20.1 Moment of Inertia of a Circular Ring (Hoop)

Consider a circular ring of radius $r$, mass $m$ and center at origin in $x y$ plane. Let $z$ axis be the axis of rotation. Let $P$ be a point on the ring making an angle $\theta$ with $x$ axis. Then

$$
\begin{aligned}
& x=r \cos \theta \\
& y=r \sin \theta
\end{aligned}
$$

The arc length of the circular ring is

$$
L=2 \pi r
$$

Consider a small mass $d m$ with arc length $s$, having circular measure $d \theta$, then

$$
s=r d \theta
$$

The mass $m$ has arc length $2 \pi r$, and the mass $d m$ has arc length $r d \theta$, so $d m$ can be written as

$$
d m=\frac{m}{2 \pi} d \theta
$$

Now moment of inertia about various axes can be determined as follows.

### 11.20.2 About the Diameter of the Ring or

## About an Axis in the Plane of the Ring and Passing Through its

 CenterSince the ring lies in $x y$ plane having center at origin, so $x$ axis or $y$ axis can be considered as the diameter of the ring/an axis in the plane of the ring and passing through its center. Hence moment of inertia about $x$ axis and $y$ axis is the same. The moment of inertia of mass $d m$ about $x$ axis is

$$
\begin{aligned}
d I_{x x} & =d m y^{2} \\
& =\frac{m}{2 \pi} d \theta(r \sin \theta)^{2} \\
& =\frac{m r^{2}}{2 \pi} \sin ^{2} \theta d \theta
\end{aligned}
$$



Figure 11.45: Ring

Next the moment of inertia of the ring about $x$ axis is

$$
\begin{aligned}
I_{x x} & =\frac{m r^{2}}{2 \pi} \int_{0}^{2 \pi} \sin ^{2} \theta d \theta \\
& =\frac{m r^{2}}{2 \pi} \int_{0}^{2 \pi}\left(\frac{1-\cos 2 \theta}{2}\right) d \theta \\
& =\frac{m r^{2}}{4 \pi}\left|\theta-\frac{\sin 2 \theta}{2}\right|_{0}^{2 \pi} \\
& =\frac{m r^{2}}{4 \pi} 2 \pi \\
& =\frac{m r^{2}}{2}
\end{aligned}
$$

Similarly the moment of inertia of the ring about $y$ axis is

$$
I_{y y}=\frac{m r^{2}}{2}
$$

Hence the moment of inertia about the diameter of the ring is

$$
I_{d}=\frac{m r^{2}}{2}
$$

### 11.20.3 About an Axis Perpendicular to Plane of the Ring and Passing Through its Center

Since the ring lies in $x y$ plane having center at origin, so $z$ axis can be considered as an axis perpendicular to plane of the ring and passing through its center. Then $r$ be the distance of mass $d m$ from $z$ axis, so its moment of inertia $z$ axis is

$$
\begin{aligned}
d I_{z z} & =d m r^{2} \\
& =\frac{m}{2 \pi} d \theta r^{2}
\end{aligned}
$$

Next the moment of inertia of the ring about $z$ axis is

$$
\begin{aligned}
I_{z z} & =\frac{m r^{2}}{2 \pi} \int_{0}^{2 \pi} d \theta \\
& =\frac{m r^{2}}{2 \pi}|\theta|_{0}^{2 \pi} \\
& =\frac{m r^{2}}{2 \pi} 2 \pi \\
& =m r^{2}
\end{aligned}
$$

## Second Approach

Using perpendicular axis theorem, the moment of inertia of mass $m$ about $z$ axis is

$$
\begin{aligned}
I_{z z} & =I_{x x}+I_{y y} \\
& =\frac{m r^{2}}{2}+\frac{m r^{2}}{2} \\
& =m r^{2}
\end{aligned}
$$

### 11.20.4 About a Line Tangent to Ring

Here two cases arise:

1. The tangent line is parallel to $z$ axis
2. The tangent line is parallel to diameter i.e. parallel to $x$ axis or $y$ axis
(1) About a line tangent to ring and parallel to $z$ axis

Let $A B$ be the line tangent to ring and parallel to $z$ axis. Then its distance from $z$ axis is $r$ Using theorem of parallel axis, the moment of inertia of mass $m$ about $A B$ axis is

$$
\begin{aligned}
I_{A B} & =I_{z z}+m(\text { distance between axes })^{2} \\
& =m r^{2}+m r^{2} \\
& =2 m r^{2}
\end{aligned}
$$



Figure 11.46: Ring

## (2) About a line parallel to diameter of the ring

Let $A B$ be the line parallel to diameter of the ring. Then its distance from diameter is $r$ Using theorem of parallel axis, the moment of inertia of mass $m$ about $A B$ axis is

$$
\begin{aligned}
I_{A B} & =I_{d}+m(\text { distance between axes })^{2} \\
& =\frac{1}{2} m r^{2}+m r^{2} \\
& =\frac{3}{2} m r^{2}
\end{aligned}
$$

### 11.20.5 Moment of Inertia of a Uniform Circular Disc

Consider a thin uniform disc of mass $m$ and radius $R$ and center at origin in $x y$ plane. Let $z$ axis be the axis of rotation, perpendicular to the plane. Let $P$ be a point on disc making an angle $\theta$ with $x$ axis at a distance $r$ from the center. Choose cylindrical coordinates with the coordinates $(r, \theta)$ in the plane and the $z$-axis. consider the mass element $d m$ show in the figure below. The area element of mass element $d m$ is the product of arc length $r d \theta$ and the radial width $d r$. That is

$$
\begin{equation*}
d A=r d r d \theta \tag{11.20.1}
\end{equation*}
$$

Since the disc is uniform, the mass per unit area is a constant,

$$
\begin{equation*}
\rho=\frac{d m}{d A}=\frac{m_{\text {total }}}{A}=\frac{m}{\pi R^{2}} \tag{11.20.2}
\end{equation*}
$$

From (11.20.1) and (11.20.2)

$$
\begin{equation*}
d m=\rho d A=\frac{m}{\pi R^{2}} r d r d \theta \tag{11.20.3}
\end{equation*}
$$



Figure 11.47: Ring

When the disc rotates, the mass element $d m$ traces out a circle of radius $r$; that is, the distance from the center is the perpendicular distance from the $z-a x i s$. Now moment of inertia about various axes can be determined as follows.

### 11.20.6 About the Diameter of the Disc OR an Axis in the Plane of the Disc and Passing Through its Center

Since the disc lies in $x y$ plane having center at origin, so $x$ axis or $y$ axis can be considered as the diameter of the disc/an axis in the plane of the ring and passing through its center. Hence moment of inertia about $x$ axis and $y$ axis is the same. The moment of inertia of mass $d m$ about $x$ axis is

$$
\begin{aligned}
d I_{x x} & =d m y^{2} \\
& =\frac{m}{\pi R^{2}} r d r d \theta(r \sin \theta)^{2} \\
& =\frac{m r^{3}}{\pi R^{2}} \sin ^{2} \theta d r d \theta
\end{aligned}
$$

The moment of inertia of the disc about $x$ axis integral is now an integral in two dimensions; the angle $\theta$ varies from $\theta=0$ to $\theta=2 \pi$, and the radial coordinate $r$ varies from $r=0$ to


Figure 11.48: Uniform circular disc
$r=R$. Thus the limits of the integral are

$$
\begin{align*}
I_{x x} & =\frac{m}{\pi R^{2}} \int_{0}^{R} \int_{0}^{2 \pi} \sin ^{2} \theta r^{3} d \theta d r \\
& =\frac{m}{\pi R^{2}} \int_{0}^{R} \int_{0}^{2 \pi}\left(\frac{1-\cos 2 \theta}{2}\right) r^{3} d \theta d r \\
& =\frac{m}{2 \pi R^{2}} \int_{0}^{R}\left|\theta-\frac{\sin 2 \theta}{2}\right|_{0}^{2 \pi} r^{3} d r \\
& =\frac{m}{2 \pi R^{2}} 2 \pi\left|\frac{r^{4}}{4}\right|_{0}^{R} \\
& =\frac{m}{4 R^{2}} R^{4} \\
& =\frac{m R^{2}}{4} \tag{11.20.4}
\end{align*}
$$

Similarly the moment of inertia of the ring about $y$ axis is

$$
I_{y y}=\frac{m R^{2}}{4}
$$

Hence the moment of inertia about the diameter of the ring is

$$
I_{d}=\frac{m R^{2}}{4}
$$

### 11.20.7 About an Axis Perpendicular to Plane of the Disc and Passing Through its Center

Since the disc lies in $x y$ plane having center at origin, so $z$ axis can be considered as an axis perpendicular to plane of the disc and passing through its center. Then $r$ be the distance of mass $d m$ from $z$ axis, so its moment of inertia $z$ axis is

$$
\begin{aligned}
d I_{z z} & =d m r^{2} \\
& =\frac{m}{\pi R^{2}} r d r d \theta r^{2} \\
& =\frac{m}{\pi R^{2}} r^{3} d r d \theta
\end{aligned}
$$

Next the moment of inertia of the ring about $z$ axis is

$$
\begin{aligned}
I_{z z} & =\frac{m}{\pi R^{2}} \int_{0}^{R} \int_{0}^{2 \pi} r^{3} d \theta d r \\
& =\frac{m}{\pi R^{2}} \int_{0}^{R}|\theta|_{0}^{2 \pi} r^{3} d r \\
& =\frac{m}{\pi R^{2}} 2 \pi\left|\frac{r^{4}}{4}\right|_{0}^{R} \\
& =\frac{2 m}{R^{2}} \frac{R^{4}}{4} \\
& =\frac{m R^{2}}{2}
\end{aligned}
$$

## Second Approach - Perpendicular axis theorem

Using perpendicular axis theorem, the moment of inertia of mass $m$ about $z$ axis is

$$
\begin{aligned}
I_{z z} & =I_{x x}+I_{y y} \\
& =\frac{m R^{2}}{4}+\frac{m R^{2}}{4} \\
& =\frac{m R^{2}}{2}
\end{aligned}
$$

### 11.20.8 About a Line Tangent to Disc - Parallel Axis Theorem

Consider a tangent line to disc passes through a point on the rim of the disc, so two cases arise:

1. The tangent line is parallel to $z$ axis
2. The tangent line is parallel to diameter i.e. parallel to $x$ axis or $y$ axis
(1) About a line tangent to disc and parallel to $z$ axis

Let $A B$ be the line tangent to ring and parallel to $z$ axis. Then its distance from $z$ axis is $R$. Using theorem of parallel axis, the moment of inertia of mass $m$ about $A B$ axis is


Figure 11.49: Uniform circular disc

$$
\begin{aligned}
I_{A B} & =I_{z z}+m(\text { distance between axes })^{2} \\
& =\frac{m R^{2}}{2}+m R^{2} \\
& =\frac{3}{2} m R^{2}
\end{aligned}
$$

(2) About a line parallel to diameter of the ring

Let $A B$ be the line parallel to diameter of the ring. Then its distance from diameter is $R$. Using theorem of parallel axis, the moment of inertia of mass $m$ about $A B$ axis is

$$
\begin{aligned}
I_{A B} & =I_{d}+m(\text { distance between axes })^{2} \\
& =\frac{m R^{2}}{4}+m R^{2} \\
& =\frac{5}{4} m R^{2}
\end{aligned}
$$

### 11.20.9 Moment of Inertia of a Uniform Elliptic Disc

Consider a thin uniform elliptic disc of mass $m$ and center at origin in $x y$ plane. Let its major axis of length $2 a$ along $x$ axis and minor axis of length $2 b$ along $y$ axis. Let $P$ be a point on disc making an angle $\theta$ with $x$ axis at a distance $r$ from the center. Choose


Figure 11.50: Uniform circular disc
cylindrical coordinates with the coordinates $(r, \theta)$ in the plane and the $z$-axis. Then

$$
\begin{aligned}
& x=a \cos \theta \\
& y=b \sin \theta
\end{aligned}
$$

Consider a strip of infinitesimal width $d y$ and mass element $d m$ at a distance $y$ from $x$ axis show in the figure 11.51. The area element of mass element $d m$ is


Figure 11.51: Uniform elliptic disc

$$
\begin{equation*}
d A=2 x d y \tag{11.20.5}
\end{equation*}
$$

Since the disc is uniform, the mass per unit area is a constant,

$$
\begin{align*}
\rho & =\frac{d m}{d A}=\frac{m_{\text {total }}}{A}  \tag{11.20.6}\\
& =\frac{d m}{2 x d y}=\frac{m}{\pi a b} \tag{11.20.7}
\end{align*}
$$

From (11.20.6), we can write

$$
\begin{equation*}
d m=\rho d A=\frac{2 m}{\pi a b} x d y \tag{11.20.8}
\end{equation*}
$$

Now moment of inertia of mass element $d m$ about major axes ( $x$ axis) is

$$
\begin{aligned}
d I_{x x} & =d m y^{2} \\
& =\frac{2 m}{\pi a b} x d y y^{2} \\
& =\frac{2 m}{\pi b} y^{2}\left(1-\frac{y^{2}}{b^{2}}\right) d y
\end{aligned}
$$

The moment of inertia of the disc about $x$ axis is now an integral from $y=-b$ to $y=b$

$$
\begin{equation*}
I_{x x}=\frac{2 m}{\pi b} \int_{-b}^{b} y^{2}\left(1-\frac{y^{2}}{b^{2}}\right) d y \tag{11.20.9}
\end{equation*}
$$

Next

$$
\begin{aligned}
y & =b \sin \theta \\
d y & =b \cos \theta d \theta \\
\frac{y}{b} & =\sin \theta
\end{aligned}
$$

When $y=-b$, then $\theta=-\frac{\pi}{2}$ and when $y=b$, then $\theta=\frac{\pi}{2}$.
Using all above results, Eq. (11.21.79) becomes

$$
\begin{aligned}
I_{x x} & =\frac{2 m b^{2}}{\pi} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \sin ^{2} \theta \cos ^{2} \theta d \theta \\
& =\frac{m b^{2}}{2 \pi} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \sin ^{2} 2 \theta d \theta \\
& =\frac{m b^{2}}{4 \pi} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}}(1-\cos 4 \theta) d \theta \\
& =\left.\frac{m b^{2}}{4 \pi}\right|_{\theta-\left.\frac{\sin 4 \theta}{4}\right|_{-\frac{\pi}{2}} ^{\frac{\pi}{2}}} \\
& =\frac{m b^{2}}{4 \pi}\left(\frac{\pi}{2}+\frac{\pi}{2}\right) \\
& =\frac{m b^{2}}{4}
\end{aligned}
$$

Similarly the moment of inertia of the disc about minor axis ( $y$ axis) is

$$
I_{y y}=\frac{m a^{2}}{4 \pi}
$$

The moment of inertia about an axis perpendicular to the plane and passing through the center of the disc ( $z$ axis) is given by using perpendicular axis theorem

$$
\begin{aligned}
I_{z z} & =\frac{m a^{2}}{4 \pi}+\frac{m a^{2}}{4 \pi} \\
& =\frac{m}{4 \pi}\left(a^{2}+b^{2}\right)
\end{aligned}
$$

### 11.21 Three Dimensional

In this section some examples will be presented in the following categories.

1. Cartesian Coordinates.
2. Cylindrical Coordinates.
3. Spherical coordinates.

### 11.21.1 Cartesian Coordinates

In this section, the moment of inertia of a cube and cupid will be calculated.
Example Calculate the inertia tensor for a homogeneous cube of density $\rho$, mass $m$, and side length $a$. Let one corner be at the origin, and three adjacent edges lie along the coordinate axes (see Figure 11.52).
Solution. We use equation (9.20) to calculate the components of the inertia tensor. Because of the symmetry of the problem, it is easy to see that the three moments of inertia $I_{x x}, I_{y y}$ and $I_{z z}$ are equal and that same holds for all of the products of inertia. So we calculate only $I_{x x}$. Then volume of mass $m$ is


Figure 11.52: A cube with edges along coordinate axis.

$$
V=a^{3}
$$

and the density is

$$
\rho=\frac{m}{V}
$$

or

$$
\begin{equation*}
m=\rho a^{3} \tag{11.21.1}
\end{equation*}
$$

Consider a cube of infinitesimal volume $d V$ and mass element $d m$ at a distance $d$ from $x$ axis show in the figure 11.52 . This distance is

$$
d=\sqrt{y^{2}+z^{2}}
$$

The volume of mass element $d m$ is

$$
\begin{equation*}
d V=d x d y d z \tag{11.21.2}
\end{equation*}
$$

Since the cube is uniform, the mass per unit area is a constant,

$$
\begin{align*}
\rho & =\frac{d m}{d V}=\frac{m_{\text {total }}}{V_{\text {total }}} \\
& =\frac{d m}{d V}=\frac{m}{V} \tag{11.21.3}
\end{align*}
$$

From (11.21.13), we can write

$$
\begin{equation*}
d m=\rho d V=\frac{m}{V} d V \tag{11.21.4}
\end{equation*}
$$

Now moment of inertia of mass element $d m$ about $x$ axis is

$$
\begin{aligned}
d I_{x x} & =d m d^{2} \\
& =\rho d V d^{2} \\
& =\rho\left(y^{2}+z^{2}\right) d V
\end{aligned}
$$

Using (11.6.4), the moment of inertia of the cube about $x$ axis is now an integral from $x=0$ to $x=a, y=0$ to $y=a$ and $z=0$ to $z=a$

$$
\begin{aligned}
I_{x x}=A & =\iiint_{V} \rho\left(y^{2}+z^{2}\right) d V \\
& =\rho \int_{0}^{a} \int_{0}^{a} \int_{0}^{a}\left(y^{2}+z^{2}\right) d z d y d x
\end{aligned}
$$

First integrating with respect to $z$

$$
\begin{aligned}
& =\rho \int_{0}^{a} \int_{0}^{a}\left[y^{2} z+\frac{z^{3}}{3}\right]_{0}^{a} d y d x \\
& =\rho \int_{0}^{a} \int_{0}^{a}\left(y^{2} a+\frac{1}{3} a^{3}\right) d y d x \\
& =\rho a \int_{0}^{a} \int_{0}^{a}\left(y^{2}+\frac{1}{3} a^{2}\right) d y d x
\end{aligned}
$$

Next integrating with respect to $y$

$$
\begin{aligned}
& =\rho a \int_{0}^{a}\left[\frac{y^{3}}{3}+\frac{1}{3} a^{2} y\right]_{0}^{a} d x \\
& =\frac{1}{3} \rho a \int_{0}^{a}\left(a^{3}+a^{2} a\right) d x \\
& =\frac{2}{3} \rho a^{4} \int_{0}^{a} d x
\end{aligned}
$$

Finally integrating with respect to $x$

$$
\begin{aligned}
& =\frac{2}{3} \rho a^{4}[x]_{0}^{a} \\
& =\frac{2}{3} \rho a^{5} \\
& =\frac{2}{3}\left(\rho a^{3}\right) a^{2}
\end{aligned}
$$

Using (11.21.1), (11.21.15) can be written as

$$
\begin{equation*}
A=\frac{2}{3} m a^{2} \tag{11.21.5}
\end{equation*}
$$

So we have

$$
\begin{equation*}
A=\frac{2}{3} m a^{2}=B=C \tag{11.21.6}
\end{equation*}
$$

Also using (11.6.7) the products of inertia w.r.t. pair of axes $(o y, o z)$ are as

$$
\begin{aligned}
D & =\iiint_{V} \rho y z d V \\
& =\rho \int_{0}^{a} \int_{0}^{a} \int_{0}^{a} y z d z d y d x
\end{aligned}
$$

First integrating with respect to $z$

$$
\begin{aligned}
& =\rho \int_{0}^{a} \int_{0}^{a} y\left[\frac{z^{2}}{2}\right]_{0}^{a} d y d x \\
& =\rho \int_{0}^{a} \int_{0}^{a} y\left(\frac{a^{2}}{2}\right) d y d x \\
& =\rho \frac{a^{2}}{2} \int_{0}^{a} \int_{0}^{a} y d y d x
\end{aligned}
$$

Next integrating with respect to $y$

$$
\begin{aligned}
& =\rho \frac{a^{2}}{2} \int_{0}^{a}\left[\frac{y^{2}}{2}\right]_{0}^{a} d x \\
& =\rho \frac{a^{2}}{2} \int_{0}^{a}\left(\frac{a^{2}}{2}\right) d x \\
& =\rho \frac{a^{4}}{4} \int_{0}^{a} d x
\end{aligned}
$$

Finally integrating with respect to $x$

$$
\begin{aligned}
& =\rho \frac{a^{4}}{4}[x]_{0}^{a} \\
& =\rho \frac{a^{4}}{4}(a) \\
& =\rho a^{3}\left(\frac{a^{2}}{4}\right)
\end{aligned}
$$

Using (11.21.1), (11.21.7) can be written as

$$
\begin{equation*}
D=m \frac{a^{2}}{4} \tag{11.21.7}
\end{equation*}
$$

Similarly the products of inertia w.r.t. pair of axes $(o z, o x)$ and (ox,oy) respectively are as under

$$
\begin{align*}
E & =m \frac{a^{2}}{4}  \tag{11.21.8}\\
F & =m \frac{a^{2}}{4} \tag{11.21.9}
\end{align*}
$$

The inertia matrix $[I]$ can be written as

$$
[I]=\left(\begin{array}{ccc}
\frac{2}{3} m a^{2} & -\frac{1}{4} m a^{2} & -\frac{1}{4} m a^{2}  \tag{11.21.10}\\
-\frac{1}{4} m a^{2} & \frac{2}{3} m a^{2} & -\frac{1}{4} m a^{2} \\
-\frac{1}{4} m a^{2} & -\frac{1}{4} m a^{2} & \frac{2}{3} m a^{2}
\end{array}\right)
$$

If we define $\alpha=m a^{2}$, the above matrix can be rewritten as

$$
[I]=\left(\begin{array}{ccc}
\frac{2}{3} \alpha & -\frac{1}{4} \alpha & -\frac{1}{4} \alpha \\
-\frac{1}{4} \alpha & \frac{2}{3} \alpha & -\frac{1}{4} \alpha \\
-\frac{1}{4} \alpha & -\frac{1}{4} \alpha & \frac{2}{3} \alpha
\end{array}\right)
$$

The radius of gyration about axis of rotation can be calculated by using (11.4.3). First about $x$ axis is

$$
K_{x}=\sqrt{\frac{I_{x x}}{m}}=\sqrt{\frac{2}{3}} a
$$

and about $y$ axis is

$$
K_{y}=\sqrt{\frac{I_{y y}}{m}}=\sqrt{\frac{2}{3}} a
$$

finally about $z$ axis is

$$
K_{z}=\sqrt{\frac{I_{z z}}{m}}=\sqrt{\frac{2}{3}} a
$$

Since the inertia matrix is not a diagonal matrix, the coordinate system cannot be the principle axes system. We could find the principle axis system by diagonalizing $[I]$. Since inertia matrix (11.21.21) is symmetric, using (11.11.13) its characteristic equation is

$$
\left(\frac{\alpha}{12}\right)^{3}\left|\begin{array}{ccc}
8-k & --3 & -3 \\
-3 & 8-k & -3 \\
-3 & -3 & 8-k
\end{array}\right|=0
$$

This equation has three real roots.

$$
\begin{array}{r}
(8-k)^{3}-27(8-k)-54=0 \\
-k^{3}+24^{2}-165 k+242=0 \\
(2-k)(k-11)^{2}=0
\end{array}
$$

the roots are $k=2$ and $k=11$
or $k_{1}=\frac{1}{6} \alpha, k_{2}=\frac{11}{12} \alpha$ and $k_{3}=\frac{11}{12} \alpha$
Using (11.11.13), the inertia matrix for principal axes through $O$ is

$$
\begin{aligned}
\left(\begin{array}{ccc}
A^{*} & 0 & 0 \\
0 & B^{*} & 0 \\
0 & 0 & C^{*}
\end{array}\right) & =\left(\begin{array}{ccc}
k_{1} & 0 & 0 \\
0 & k_{2} & 0 \\
0 & 0 & k_{3}
\end{array}\right) \\
& =\left(\begin{array}{ccc}
\frac{1}{6} \alpha & 0 & 0 \\
0 & \frac{11}{12} \alpha & 0 \\
0 & 0 & \frac{11}{12} \alpha
\end{array}\right)
\end{aligned}
$$

Hence the principal moment of inertia about $O$ are

$$
\begin{aligned}
A^{*} & =\frac{1}{6} m a^{2} \\
B^{*} & =\frac{11}{12} m a^{2} \\
C^{*} & =\frac{11}{12} m a^{2}
\end{aligned}
$$

Here $B^{*}=C^{*}$ i.e. two principal moment of inertia are identical, so there must be one principal axis corresponding to $A^{*}$ through $O$.
To find the direction of the principal axis associated with $A^{*}$, we use $k=k_{1}=\frac{1}{6} \alpha$ in (11.11.6)

$$
\begin{aligned}
\left(\frac{2}{3} \alpha-\frac{1}{6} \alpha\right) \omega_{x}-\frac{1}{4} \alpha \omega_{y}-\frac{1}{4} \alpha \omega_{z} & =0 \\
-\frac{1}{4} \alpha \omega_{x}+\left(\frac{2}{3} \alpha-\frac{1}{6} \alpha\right) \omega_{y}-\frac{1}{4} \alpha \omega_{z} & =0 \\
-\frac{1}{4} \alpha \omega_{x}-\frac{1}{4} \alpha \omega_{y}+\left(\frac{2}{3} \alpha-\frac{1}{6} \alpha\right) \omega_{z} & =0
\end{aligned}
$$

The above system can be written as

$$
\begin{aligned}
2 \omega_{x}-\omega_{y}-\omega_{z} & =0 \\
-\omega_{x}+2 \omega_{y}-\omega_{z} & =0 \\
-\omega_{x}-\omega_{y}+\omega_{z} & =0
\end{aligned}
$$

This system reduces to

$$
\begin{aligned}
2 \omega_{x}-\omega_{y}-\omega_{z} & =0 \\
+\omega_{y}-\omega_{z} & =0
\end{aligned}
$$

Here $\omega_{z}$ is free variable, let it be 1 , then we have

$$
\omega_{x}=\omega_{y}=\omega_{z}
$$

and the desired ratios are

$$
\omega_{x}: \omega_{y}: \omega_{z}=1: 1: 1
$$

As a result, when the cube rotates about an axis that has associated with it the moment of inertia $I=\frac{1}{6} \alpha=\frac{1}{6} m a^{2}$, the projections of $\omega$ on the three coordinate axes are all equal. Hence this principal axis corresponds to the diagonal of the cube.
Since $B=C$, two moments are equal, the orientation of the principal axis associated with these moments is arbitrary, need only lie in a plane normal to the diagonal of the cube. Hence we have infinite sets of principal axes, with one fixed principal axis.

Example 11.21.1. Consider a uniform solid rectangular block of mass $m$ and dimension $2 a \times 2 b \times 2 c$. Find moment of inertia about coordinate axes with $O$ as center of mass.

Solution Consider $O X Y Z$ a regular trihedral system and $P A B C$ a solid rectangular block (parallelepiped) with origin $O$ as center of mass. Also

$$
P A=2 a, P B=2 b \text { and } P C=2 c
$$

Then volume of mass $m$ is

$$
V=8 a b c
$$

and the density is

$$
\rho=\frac{m}{V}
$$

or

$$
\begin{equation*}
m=\rho 8 a b c \tag{11.21.11}
\end{equation*}
$$



Figure 11.53: uniform solid rectangular block

Consider a cube of infinitesimal volume $d V$ and mass element $d m$ at a distance $d$ from $x$ axis show in the figure 11.53. This distance is

$$
d=\sqrt{y^{2}+z^{2}}
$$

The volume of mass element $d m$ is

$$
\begin{equation*}
d V=d x d y d z \tag{11.21.12}
\end{equation*}
$$

Since the cube is uniform, the mass per unit area is a constant,

$$
\begin{align*}
\rho & =\frac{d m}{d V}=\frac{m_{\text {total }}}{V_{\text {total }}} \\
& =\frac{d m}{d V}=\frac{m}{V} \tag{11.21.13}
\end{align*}
$$

From (11.21.13), we can write

$$
\begin{equation*}
d m=\rho d V=\frac{m}{V} d V \tag{11.21.14}
\end{equation*}
$$

Now moment of inertia of mass element $d m$ about $x$ axis is

$$
\begin{aligned}
d I_{x x} & =d m d^{2} \\
& =\rho d V d^{2} \\
& =\rho\left(y^{2}+z^{2}\right) d V
\end{aligned}
$$

Using (11.6.4), the moment of inertia of the cube about $x$ axis is now an integral from $x=-a$ to $x=a, y=-b$ to $y=b$ and $z=-c$ to $z=c$

$$
\begin{aligned}
I_{x x}=A & =\iiint_{V} \rho\left(y^{2}+z^{2}\right) d V \\
& =\rho \int_{-a}^{a} \int_{-b}^{b} \int_{-c}^{c}\left(y^{2}+z^{2}\right) d z d y d x
\end{aligned}
$$

First integrating with respect to $z$

$$
\begin{aligned}
& =\rho \int_{-a}^{a} \int_{-b}^{b}\left[y^{2} z+\frac{z^{3}}{3}\right]_{-c}^{c} d y d x \\
& =\rho \int_{-a}^{a} \int_{-b}^{b}\left(y^{2}(c+c)+\frac{1}{3}\left(c^{3}+c^{3}\right)\right) d y d x \\
& =2 c \rho \int_{-a}^{a} \int_{-b}^{b}\left(y^{2}+\frac{1}{3} c^{2}\right) d y d x
\end{aligned}
$$

Next integrating with respect to $y$

$$
\begin{aligned}
& =2 c \rho \int_{-a}^{a}\left[\frac{y^{3}}{3}+\frac{1}{3} a^{2} y\right]_{-b}^{b} d x \\
& =\frac{4}{3} \rho c \int_{-a}^{a}\left(b^{3}+c^{2} b\right) d x \\
& =\frac{4}{3} \rho b c \int_{-a}^{a}\left(b^{2}+c^{2}\right) d x
\end{aligned}
$$

Finally integrating with respect to $x$

$$
\begin{aligned}
& =\frac{4}{3} \rho b c\left(b^{2}+c^{2}\right)[x]_{-a}^{a} \\
& =\frac{8}{3} \rho a b c\left(b^{2}+c^{2}\right) \\
& =\frac{1}{3}(\rho 8 a b c)\left(b^{2}+c^{2}\right)
\end{aligned}
$$

Using (11.21.1), (11.21.15) can be written as

$$
\begin{equation*}
A=\frac{1}{3} m\left(b^{2}+c^{2}\right) \tag{11.21.15}
\end{equation*}
$$

Similarly

$$
\begin{equation*}
B=\frac{1}{3} m\left(a^{2}+c^{2}\right) \tag{11.21.16}
\end{equation*}
$$

and

$$
\begin{equation*}
C=\frac{1}{3} m\left(a^{2}+c^{2}\right) \tag{11.21.17}
\end{equation*}
$$

Also using (11.6.7) the products of inertia w.r.t. pair of axes (oy,oz) are as

$$
\begin{aligned}
D & =\iiint_{V} \rho y z d V \\
& =\rho \int_{-a}^{a} \int_{-b}^{b} \int_{-c}^{c} y z d z d y d x
\end{aligned}
$$

First integrating with respect to $z$

$$
\begin{aligned}
& =\rho \int_{-a}^{a} \int_{-b}^{b} y\left[\frac{z^{2}}{2}\right]_{-c}^{c} d y d x \\
& =\rho \int_{-a}^{a} \int_{-b}^{b} y \frac{1}{2}\left(c^{2}-c^{2}\right) d y d x \\
& =0
\end{aligned}
$$

Using (11.21.56), (11.21.26) can be written as

$$
\begin{equation*}
D=0 \tag{11.21.18}
\end{equation*}
$$

Similarly the products of inertia w.r.t. pair of axes (oz,ox) and (ox,oy) respectively are as under

$$
\begin{align*}
& E=0  \tag{11.21.19}\\
& F=0 \tag{11.21.20}
\end{align*}
$$

The inertia matrix $[I]$ can be written as

$$
[I]=\left(\begin{array}{ccc}
\frac{1}{3} m\left(b^{2}+c^{2}\right) & 0 & 0  \tag{11.21.21}\\
0 & \frac{1}{3} m\left(a^{2}+c^{2}\right) & 0 \\
0 & 0 & \frac{1}{3} m\left(a^{2}+c^{2}\right)
\end{array}\right)
$$

Example 11.21.2. Consider a uniform solid rectangular block of mass $m$ and dimension $2 a \times 2 b \times 2 c$. Find M.I. about coordinate axes with Oas center of mass.

Solution Consider $O X Y Z$ a regular trihedral system and $P A B C$ a solid rectangular block (parallelepiped) with origin as center of mass. Let G be the center of mass. Then $O=G$. Also

$$
P A=2 a, P B=2 b \text { and } P C=2 c
$$

Then volume of mass $m$ is


Figure 11.54: uniform solid rectangular block

$$
V=8 a b c
$$

and the density is

$$
\rho=\frac{m}{V}
$$

or

$$
\begin{equation*}
m=\rho 8 a b c \tag{11.21.22}
\end{equation*}
$$

Using (11.6.4) M.I of the block about $x-$ axis is

$$
\begin{aligned}
I_{x x}=A & =\iiint_{V} \rho\left(y^{2}+z^{2}\right) d V \\
& =\rho \int_{0}^{2 a} \int_{0}^{2 b} \int_{0}^{2 c}\left(y^{2}+z^{2}\right) d z d y d x
\end{aligned}
$$

First integrating with respect to $z$

$$
\begin{aligned}
& =\rho \int_{0}^{2 a} \int_{0}^{2 b}\left[y^{2} z+\frac{z^{3}}{3}\right]_{0}^{2 c} d y d x \\
& =\rho \int_{0}^{2 a} \int_{0}^{2 b}\left(y^{2} 2 c+\frac{8}{3} c^{3}\right) d y d x \\
& =\rho 2 c \int_{0}^{2 a} \int_{0}^{2 b}\left(y^{2}+\frac{4}{3} c^{2}\right) d y d x
\end{aligned}
$$

Next integrating with respect to $y$

$$
\begin{aligned}
& =\rho 2 c \int_{0}^{2 a}\left[\frac{y^{3}}{3}+\frac{4}{3} c^{2} y\right]_{0}^{2 b} d x \\
& =\frac{2}{3} \rho c \int_{0}^{2 a}\left(8 b^{3}+4 c^{2} 2 b\right) d x \\
& =\frac{16}{3} \rho b c \int_{0}^{2 a}\left(b^{2}+c^{2}\right) d x
\end{aligned}
$$

Finally integrating with respect to $x$

$$
\begin{aligned}
& =\frac{16}{3} \rho b c\left(b^{2}+c^{2}\right)[x]_{0}^{2 a} \\
& =\frac{16}{3} \rho b c\left(b^{2}+c^{2}\right) 2 a \\
& =\frac{4}{3}(\rho 8 a b c)\left(b^{2}+c^{2}\right)
\end{aligned}
$$

Using (11.21.56), (11.21.23) can be written as

$$
\begin{equation*}
A=\frac{4}{3} m\left(b^{2}+c^{2}\right) \tag{11.21.23}
\end{equation*}
$$

Similarly

$$
\begin{equation*}
B=\frac{4}{3} m\left(a^{2}+c^{2}\right) \tag{11.21.24}
\end{equation*}
$$

and

$$
\begin{equation*}
C=\frac{4}{3} m\left(a^{2}+c^{2}\right) \tag{11.21.25}
\end{equation*}
$$

Also using (11.6.7) the products of inertia w.r.t. pair of axes (oy,oz) are as

$$
\begin{aligned}
D & =\iiint_{V} \rho y z d V \\
& =\rho \int_{0}^{2 a} \int_{0}^{2 b} \int_{0}^{2 c} y z d z d y d x
\end{aligned}
$$

First integrating with respect to $z$

$$
\begin{aligned}
& =\rho \int_{0}^{2 a} \int_{0}^{2 b} y\left[\frac{z^{2}}{2}\right]_{0}^{2 c} d y d x \\
& =\rho \int_{0}^{2 a} \int_{0}^{2 b} y\left(\frac{4}{2} c^{2}\right) d y d x \\
& =\rho 2 c^{2} \int_{0}^{2 a} \int_{0}^{2 b} y d y d x
\end{aligned}
$$

Next integrating with respect to $y$

$$
\begin{aligned}
& =\rho 2 c^{2} \int_{0}^{2 a}\left[\frac{y^{2}}{2}\right]_{0}^{2 b} d x \\
& =\rho 2 c^{2} \int_{0}^{2 a}\left(\frac{4 b^{2}}{2}\right) d x \\
& =4 \rho b^{2} c^{2} \int_{0}^{2 a} d x
\end{aligned}
$$

Finally integrating with respect to $x$

$$
\begin{aligned}
& =4 \rho b^{2} c^{2}[x]_{0}^{2 a} \\
& =4 \rho b^{2} c^{2}(2 a) \\
& =(\rho 8 a b c) b c
\end{aligned}
$$

Using (11.21.56), (11.21.26) can be written as

$$
\begin{equation*}
D=m b c \tag{11.21.26}
\end{equation*}
$$

Similarly the products of inertia w.r.t. pair of axes $(o z, o x)$ and ( $o x, o y$ ) respectively are as under

$$
\begin{align*}
& E=m a c  \tag{11.21.27}\\
& F=m a b \tag{11.21.28}
\end{align*}
$$

The inertia matrix $[I]$ can be written as

$$
\begin{align*}
{[I] } & =\left(\begin{array}{ccc}
\frac{4}{3} m\left(b^{2}+c^{2}\right) & -m a b & -m a c \\
-m a b & \frac{4}{3} m\left(a^{2}+c^{2}\right) & -m b c \\
-m a c & -m b c & \frac{4}{3} m\left(a^{2}+b^{2}\right)
\end{array}\right) \\
& =\frac{m}{3}\left(\begin{array}{ccc}
4\left(b^{2}+c^{2}\right) & -3 a b & -3 a c \\
-3 a b & 4\left(a^{2}+c^{2}\right) & -3 b c \\
-3 a c & -3 b c & 4\left(a^{2}+b^{2}\right)
\end{array}\right) \tag{11.21.29}
\end{align*}
$$

If the dimension of the rectangular block is $a \times b \times c$, then the above matrix is.

$$
\begin{align*}
{[I] } & =\left(\begin{array}{ccc}
\frac{1}{3} m\left(b^{2}+c^{2}\right) & -\frac{1}{4} m a b & -\frac{1}{4} m a c \\
-\frac{1}{4} m a b & \frac{1}{3} m\left(a^{2}+c^{2}\right) & -\frac{1}{4} m b c \\
-\frac{1}{4} m a c & -\frac{1}{4} m b c & \frac{1}{3} m\left(a^{2}+b^{2}\right)
\end{array}\right) \\
& =\frac{m}{12}\left(\begin{array}{ccc}
4\left(b^{2}+c^{2}\right) & -3 a b & -3 a c \\
-3 a b & 4\left(a^{2}+c^{2}\right) & -3 b c \\
-3 a c & -3 b c & 4\left(a^{2}+b^{2}\right)
\end{array}\right) \tag{11.21.30}
\end{align*}
$$

Example 11.21.3. Consider a uniform solid rectangular block of mass $m$ and dimension $2 a \times 2 b \times 2 c$. Find the equation of the momental ellipsoid for a corner $O$ of the block, referred to the edges through $O$ as co-ordinates axes and hence determine M.I. about $O P$, where $P$ is the point diagonally opposite to $O$.

Solution Consider $O X Y Z$ a regular trihedral system and $O A B C D E F P$ a solid rectangular block (parallelepiped). Then

$$
O A=2 a, O B=2 b \text { and } O C=2 c
$$

Then volume of mass $m$ is


Figure 11.55: Uniform solid rectangular block

$$
V=8 a b c
$$

and the density is

$$
\rho=\frac{m}{V}
$$

or

$$
\begin{equation*}
m=\rho 8 a b c \tag{11.21.31}
\end{equation*}
$$

The M.I of the block about coordinate axis are

$$
\begin{aligned}
& A=\frac{4}{3} m\left(b^{2}+c^{2}\right) \\
& B=\frac{4}{3} m\left(a^{2}+c^{2}\right)
\end{aligned}
$$

and

$$
C=\frac{4}{3} m\left(a^{2}+b^{2}\right)
$$

Also the products of inertia w.r.t. pair of axes (oy,oz), (oz,ox) and (ox,oy) are as

$$
\begin{aligned}
& D=m b c \\
& E=m a c
\end{aligned}
$$

and

$$
F=m a b
$$

Using these results in (11.16.6) standard equation of momental ellipsoid, we get

$$
\begin{align*}
I r^{2} & =\frac{4}{3} m\left[\left(b^{2}+c^{2}\right) x^{2}+\left(c^{2}+a^{2}\right) y^{2}+\left(a^{2}+b^{2}\right) z^{2}\right] \\
& -2 m[b c y z+c a z x+a b x y] \tag{11.21.32}
\end{align*}
$$

(11.21.32) is the required equation of momental ellipsoid.

Next M.I. about $O P$ axis is:
From the Fig. we can write

$$
\overrightarrow{O P}=\vec{r}=\langle 2 a, 2 b, 2 c\rangle
$$

then

$$
r^{2}=4\left(a^{2}+b^{2}+c^{2}\right)
$$

Take

$$
x=2 a, y=2 b \text { and } z=2 c
$$

Using above values in (11.21.32), $I_{O P}$ is

$$
\begin{align*}
4\left(a^{2}+b^{2}+c^{2}\right) I_{O P} & =\frac{4}{3} m\left[4 a^{2}\left(b^{2}+c^{2}\right)+4 b^{2}\left(c^{2}+a^{2}\right)+4 c^{2}\left(a^{2}+b^{2}\right)\right] \\
& -2 m[b c(4 b c)+c a(4 c a)+a b(4 a b)] \\
4\left(a^{2}+b^{2}+c^{2}\right) I_{O P} & =\frac{8}{3} m\left[4\left(a^{2} b^{2}+a^{2} c^{2}+b^{2} c^{2}\right)\right]-8 m\left(a^{2} b^{2}+a^{2} c^{2}+b^{2} c^{2}\right) \\
I_{O P} & =\frac{2}{3} m \frac{\left(a^{2} b^{2}+a^{2} c^{2}+b^{2} c^{2}\right)}{\left(a^{2}+b^{2}+c^{2}\right)} \tag{11.21.33}
\end{align*}
$$

(11.21.33) is the M.I. about $O P$ axis or diagonal.

### 11.21.2 Cylindrical Coordinates

Moment of Inertia of a Cylinder about its Axis Consider a cylinder of mass $m$, the origin coincides with center of mass and $z$ axis as the axis of rotation. Let $P$ be a point on cylinder. Take $r$ (distance of $P$ from $z$ axis) in $x y$ plane making an angle $\theta$ with $x$ axis. Then cylindrical coordinates of $P$ are

$$
\begin{aligned}
x & =r \cos \theta \\
y & =r \sin \theta \\
z & =z
\end{aligned}
$$

Let $R$ be the radius of base and $L$ be the height of the cylinder, then volume of mass $m$ is

$$
V=\pi R^{2} L
$$

Consider an infinitesimal volume $d V$ having mass element $d m$ at a distance $d$ from origin shown in the figure 11.56. The volume of mass element $d m$ is


Figure 11.56: Cylinder

$$
\begin{equation*}
d V=d x d y d z=r d r d \theta d z \tag{11.21.34}
\end{equation*}
$$

Since the cylinder is uniform, the mass per unit volume is a constant,

$$
\begin{align*}
\rho & =\frac{d m}{d V}=\frac{m_{\text {total }}}{V} \\
& =\frac{d m}{r d r d \theta d z}=\frac{m}{\pi R^{2} L} \tag{11.21.35}
\end{align*}
$$

From (11.21.35), we can write

$$
\begin{equation*}
d m=\frac{m}{\pi R^{2} L} r d r d \theta d z \tag{11.21.36}
\end{equation*}
$$

(a) The moment of inertia of mass element $d m$ about $z$ axis is

$$
\begin{aligned}
d I_{z z} & =d m r^{2} \\
& =\frac{m}{\pi R^{2} L} r d r d \theta d z r^{2} \\
& =\frac{m}{\pi R^{2} L} r^{3} d r d \theta d z
\end{aligned}
$$

The moment of inertia of the cylinder about $z$ axis is now an integral from $r=0$ to $r=R$, $\theta=0$ to $\theta=2 \pi$ and $z=-\frac{L}{2}$ to $z=\frac{L}{2}$

$$
I_{z z}=\frac{m}{\pi R^{2} L} \int_{-\frac{L}{2}}^{-\frac{L}{2}} \int_{0}^{2 \pi} \int_{0}^{R} r^{3} d r d \theta d z
$$

First integrating with respect to $r$

$$
=\frac{m}{\pi R^{2} L}\left|\frac{r^{4}}{4}\right|_{0}^{R} \int_{-\frac{L}{2}}^{-\frac{L}{2}} \int_{0}^{2 \pi} d \theta d z
$$

Next integrating with respect to $\theta$

$$
=\frac{m R^{2}}{4 \pi L}|\theta|_{0}^{2 \pi} \int_{-\frac{L}{2}}^{-\frac{L}{2}} d z
$$

Finally integrating with respect to $z$

$$
\begin{aligned}
& =\frac{m R^{2}}{2 L}|z|_{-\frac{L}{2}}^{-\frac{L}{2}} \\
& =\frac{m R^{2}}{2}
\end{aligned}
$$

Hence the moment of inertia about $z$ axis is

$$
\begin{equation*}
C=\frac{m R^{2}}{2} \tag{11.21.37}
\end{equation*}
$$

(b) Moment of Inertia of a Cylinder about an Axis Normal to the axis of the cylinder and passing through its Center of Mass - $I_{x x}$ or $I_{y y}$
Here $x$ axis and $y$ axis both are normal to the axis of the cylinder and passing through its


Figure 11.57: Cylinder
center of mass. Hence it is enough to find about any one axis. Let's consider $x$ axis. To calculate moment of inertia about $x$ axis, see Fig. 11.57. Here $d$ is distance of point mass $d m$ from $x$ axis, and can be calculated as the hypotonus of right angle triangle $P A B$

$$
d^{2}=z^{2}+r^{2} \sin ^{2} \theta
$$

The moment of inertia of mass element $d m$ about $x$ axis is

$$
\begin{aligned}
d I_{x x} & =d m d^{2} \\
& =\frac{m}{\pi R^{2} L} r d r d \theta d z\left(z^{2}+r^{2} \sin ^{2} \theta\right) \\
& =\frac{m}{\pi R^{2} L} r\left(z^{2}+r^{2} \sin ^{2} \theta\right) d r d \theta d z
\end{aligned}
$$

The moment of inertia of the cylinder about $x$ axis is now an integral from $r=0$ to $r=R$, $\theta=0$ to $\theta=2 \pi$ and $z=-\frac{L}{2}$ to $z=\frac{L}{2}$

$$
\begin{aligned}
I_{x x} & =\frac{m}{\pi R^{2} L} \int_{-\frac{L}{2}}^{-\frac{L}{2}} \int_{0}^{2 \pi} \int_{0}^{R} r\left(z^{2}+r^{2} \sin ^{2} \theta\right) d r d \theta d z \\
& =\frac{m}{\pi R^{2} L} \int_{-\frac{L}{2}}^{-\frac{L}{2}} \int_{0}^{2 \pi} \int_{0}^{R}\left(r z^{2}+r^{3} \sin ^{2} \theta\right) d r d \theta d z
\end{aligned}
$$

First integrating with respect to $r$

$$
=\frac{m}{\pi R^{2} L} \int_{-\frac{L}{2}}^{-\frac{L}{2}} \int_{0}^{2 \pi}\left|\frac{r^{2}}{2} z^{2}+\frac{r^{4}}{4} \sin ^{2} \theta\right|_{0}^{R} d \theta d z
$$

Next integrating with respect to $\theta$

$$
\begin{aligned}
& =\frac{m}{4 \pi L} \int_{-\frac{L}{2}}^{-\frac{L}{2}}\left|2 z^{2} \theta+\frac{1}{2} R^{2}\left(\theta+\frac{1}{2} \sin 2 \theta\right)\right|_{0}^{2 \pi} d z \\
& =\frac{m}{4 \pi L} \int_{-\frac{L}{2}}^{-\frac{L}{2}}\left|4 z^{2} \pi+R^{2} \pi\right| d z
\end{aligned}
$$

Finally integrating with respect to $z$

$$
\begin{aligned}
& =\frac{m}{4 L}\left|\frac{4}{3} z^{3}+z R^{2}\right|_{-\frac{L}{2}}^{-\frac{L}{2}} \\
& =\frac{m}{4 L}\left(\frac{4}{3}\left[\left(\frac{L}{2}\right)^{3}-\left(-\frac{L}{2}\right)^{3}\right]+\left[\left(\frac{L}{2}\right)-\left(-\frac{L}{2}\right)\right] R^{2}\right) \\
& =m\left(\frac{L^{2}}{12}+\frac{R^{2}}{4}\right)
\end{aligned}
$$

Hence the moment of inertia about $x$ axis is

$$
\begin{equation*}
A=m\left(\frac{L^{2}}{12}+\frac{R^{2}}{4}\right) \tag{11.21.38}
\end{equation*}
$$

Also the moment of inertia about $y$ axis is

$$
\begin{equation*}
I_{y y}=B=m\left(\frac{L^{2}}{12}+\frac{R^{2}}{4}\right) \tag{11.21.39}
\end{equation*}
$$

To calculate the products of inertia, i.e. the off-diagonal terms in the tensor of inertia, we make use of orthogonal trigonometric relations. First the products of inertia w.r.t. pair of axes (oy,oz) are as

$$
\begin{aligned}
I_{y z}=I_{z y} & =\iiint_{V} \rho y z d V \\
D & =\rho \int_{-\frac{h}{2}}^{\frac{h}{2}} \int_{0}^{2 \pi} \int_{0}^{R} r^{2} \sin \theta z d r d \theta d z
\end{aligned}
$$

Since

$$
\begin{equation*}
\int_{0}^{2 \pi} \sin \theta d \theta=\int_{0}^{2 \pi} \cos \theta d \theta=0 \tag{11.21.40}
\end{equation*}
$$

Hence

$$
D=0
$$

Next the products of inertia w.r.t. pair of axes $(o x, o z)$ are as

$$
\begin{aligned}
I_{x z}=I_{z x} & =\iiint_{V} \rho x z d V \\
E & =\rho \int_{-\frac{h}{2}}^{\frac{h}{2}} \int_{0}^{2 \pi} \int_{0}^{R} r^{2} \cos \theta z d r d \theta d z
\end{aligned}
$$

Using (11.21.40)

$$
\begin{equation*}
E=0 \tag{11.21.41}
\end{equation*}
$$

Finally the products of inertia w.r.t. pair of axes $(o x, o y)$ are as

$$
\begin{aligned}
I_{x y}=I_{y z} & =\iiint_{V} \rho x y d V \\
F & =\rho \int_{-\frac{h}{2}}^{\frac{h}{2}} \int_{0}^{2 \pi} \int_{0}^{R} r^{2} \sin \theta \cos \theta d r d \theta d z
\end{aligned}
$$

Since

$$
\begin{equation*}
\int_{0}^{2 \pi} \sin \theta \cos \theta d \theta=0 \tag{11.21.42}
\end{equation*}
$$

Hence

$$
F=0
$$

Also This is due to the symmetry of the cylinder (under consideration), the $x, y$ and $z$ axes, coincide with its the principal axes, and hence the products of inertia are zero. The inertia
matrix [ $I$ ] can be written as

$$
[I]=\left(\begin{array}{ccc}
m\left(\frac{L^{2}}{12}+\frac{R^{2}}{4}\right) & 0 & 0  \tag{11.21.43}\\
0 & m\left(\frac{L^{2}}{12}+\frac{R^{2}}{4}\right) & 0 \\
0 & 0 & \frac{m R^{2}}{2}
\end{array}\right)
$$

Now let us assume that the cylinder rotates with angular velocity $\omega$ about the $z$ axis. Thus the angular velocity vector for the solid is

$$
\vec{\omega}=\langle 0,0, \omega\rangle
$$

Using (11.11.14) the angular momentum of the system is

$$
\begin{aligned}
\left(\begin{array}{c}
L_{x} \\
L_{y} \\
L_{z}
\end{array}\right) & =\left(\begin{array}{ccc}
A & 0 & 0 \\
0 & B & 0 \\
0 & 0 & C
\end{array}\right)\left(\begin{array}{l}
0 \\
0 \\
\omega
\end{array}\right) \\
\vec{L} & =C \omega \hat{k}
\end{aligned}
$$

Using (11.21.37)

$$
\begin{equation*}
\vec{L}=\frac{m R^{2}}{2} \omega \hat{k} \tag{11.21.44}
\end{equation*}
$$

represents the rotational motion about a fixed axis.
The kinetic energy of the system is

$$
\begin{aligned}
K & =\frac{1}{2} \vec{\omega} \cdot \vec{L} \\
& =\frac{1}{4} m R^{2} \omega^{2}
\end{aligned}
$$

Since $\vec{L}$ is a vector constant, so the torque vanishes,

$$
\vec{N}=\frac{d \vec{L}}{d t}=0
$$

Hence the system can continue spinning about its axis of rotation ( $z$ axis) without the need to apply any torque to maintain it in this state.

Example 11.21.4. Consider a uniform solid right circular cone of mass $m$ with hight $h$ and base radius $r$. Find moment of inertia about its axis of symmetry.

Solution Consider a regular trihedral system and a solid right circular cone of mass $m$ with height $h$ and vertex at origin $O$. Let $x$ axis be the axis of symmetry. Then

$$
O A=h, \text { and } A B=r
$$

Then volume of mass $m$ is


Figure 11.58: uniform solid right circular cone

$$
\begin{equation*}
V=\frac{1}{3} \pi r^{2} h \tag{11.21.45}
\end{equation*}
$$

and the density is

$$
\rho=\frac{m}{V}
$$

or

$$
\begin{equation*}
m=\frac{1}{3} \rho \pi r^{2} h \tag{11.21.46}
\end{equation*}
$$

Consider a disc of mass element $d m$ and infinitesimal width $d x$ having radius $y$, at a distance $x$ from $O$, shown in figure 11.58. From similar triangles $O A B$ and $O C P$, we can write

$$
\begin{aligned}
\frac{O A}{A B} & =\frac{O C}{C P} \\
\frac{h}{r} & =\frac{x}{y}
\end{aligned}
$$

and $y$ can be written as

$$
\begin{equation*}
y=\frac{r}{h} x \tag{11.21.47}
\end{equation*}
$$

The volume of mass element $d m$ is

$$
\begin{equation*}
d V=\pi y^{2} d x \tag{11.21.48}
\end{equation*}
$$

Since the cone is uniform, the mass per unit area is a constant,

$$
\begin{align*}
\rho & =\frac{d m}{d V}=\frac{m_{\text {total }}}{V_{\text {total }}} \\
& =\frac{d m}{d V}=\frac{m}{V} \tag{11.21.49}
\end{align*}
$$

From (11.21.49), we can write

$$
d m=\rho d V=\frac{m}{V} d V
$$

From (11.21.45) and (11.21.48), $d m$ can be written as

$$
d m=\frac{3 m y^{2}}{r^{2} h} d x
$$

Using (11.21.47), $d m$ is

$$
\begin{equation*}
d m=\frac{3 m}{h^{3}} x^{2} d x \tag{11.21.50}
\end{equation*}
$$

Using (11.20.5), the moment of inertia of mass element $d m$ about $x$ axis is

$$
d I_{x x}=\frac{1}{2} d m y^{2}
$$

Using (11.21.47) and (11.21.50), $d I_{x x}$ is

$$
d I_{x x}=\frac{3}{2} \frac{m r^{2}}{h^{5}} x^{4} d x
$$

Using (11.6.4), the moment of inertia of the cone about $x$ axis is now an integral from $x=0$ to $x=h$.

$$
\begin{aligned}
I_{x x}=A & =\frac{3}{2} \frac{m r^{2}}{h^{5}} \int_{0}^{h} x^{4} d x \\
& =\frac{3}{2} \frac{m r^{2}}{h^{5}}\left[\frac{x^{5}}{5}\right]_{0}^{h} \\
& =\frac{3}{10} m r^{2}
\end{aligned}
$$

Hence

$$
\begin{equation*}
A=\frac{3}{10} m r^{2} \tag{11.21.51}
\end{equation*}
$$

## 2. About $y$ axis

Using (11.20.5), the moment of inertia of mass element $d m$ about its diameter is

$$
\begin{equation*}
I_{d}=\frac{1}{4} d m y^{2} \tag{11.21.52}
\end{equation*}
$$

Since the diameter is passing through the center of mass of small disc, so we can use parallel axis theorem to find moment of inertia about $y$ axis, by taking $C P$ axis (diameter) parallel to $y$ axis.

$$
d I_{y y}=\frac{1}{4} d m y^{2}+d m x^{2}
$$

Using (11.21.47) and (11.21.50), $d I_{x x}$ is

$$
\begin{aligned}
d I_{y y} & =\frac{3}{4} \frac{m r^{2}}{h^{5}} x^{4} d x+3 \frac{m}{h^{3}} x^{4} d x \\
& =\left[\frac{3}{4} \frac{m r^{2}}{h^{5}}+3 \frac{m}{h^{3}}\right] x^{4} d x
\end{aligned}
$$

Using (11.6.4), the moment of inertia of the cone about $y$ axis is now an integral from $x=0$ to $x=h$.

$$
\begin{aligned}
I_{y y}=B & =\left(\frac{3}{4} \frac{m r^{2}}{h^{5}}+3 \frac{m}{h^{3}}\right) \int_{0}^{h} x^{4} d x \\
& =\left(\frac{3}{4} \frac{m r^{2}}{h^{5}}+3 \frac{m}{h^{3}}\right)\left[\frac{x^{5}}{5}\right]_{0}^{h} \\
& =\frac{3}{20} m\left(r^{2}+4 h^{2}\right)
\end{aligned}
$$

Hence

$$
\begin{equation*}
B=\frac{3}{20} m\left(r^{2}+4 h^{2}\right) \tag{11.21.53}
\end{equation*}
$$

Similarly about $z$ axis

$$
\begin{equation*}
C=I_{z z}=\frac{3}{20} m\left(r^{2}+4 h^{2}\right) \tag{11.21.54}
\end{equation*}
$$

Example 11.21.5. Consider a uniform solid paraboloid of mass m. Find moment of inertia about its axis of symmetry.

Solution Consider a regular trihedral system and a paraboloid of mass $m$ with vertex at origin $O$. Let $x$ axis be the axis of symmetry. Then

$$
O A=h, \text { and } A B=r
$$



Figure 11.59: solid paraboloid

Then volume of mass $m$ is

$$
\begin{equation*}
V=\frac{1}{2} \pi r^{2} h \tag{11.21.55}
\end{equation*}
$$

and the density is

$$
\rho=\frac{m}{V}
$$

or

$$
\begin{equation*}
m=\frac{1}{2} \rho \pi r^{2} h \tag{11.21.56}
\end{equation*}
$$

For $y$ consider the Fig 11.60, from the definition of a parabola, we have

$$
\begin{equation*}
y^{2}=4 a x \tag{11.21.57}
\end{equation*}
$$

and

$$
\begin{equation*}
|B F|=|B E| \tag{11.21.58}
\end{equation*}
$$

From Fig 11.60, $|B E|$ can be written as

$$
\begin{equation*}
|B E|=|A O|+|O D|=h+a \tag{11.21.59}
\end{equation*}
$$

For $|B F|$, consider right angle triangle $B A F$,

$$
\begin{align*}
|B F|^{2} & =|B A|^{2}+|A F|^{2} \\
& =r^{2}+(h-a)^{2} \tag{11.21.60}
\end{align*}
$$



Figure 11.60: Parabola

Using (11.21.59) and (11.21.60), (11.21.58) can be written as

$$
\begin{align*}
(h+a)^{2} & =r^{2}+(h-a)^{2} \\
2 a h & =r^{2}+-2 a h \\
4 a & =\frac{r^{2}}{h} \tag{11.21.61}
\end{align*}
$$

Using (11.21.61), (11.21.57) can be written as

$$
\begin{equation*}
y^{2}=\frac{r^{2}}{h} x \tag{11.21.62}
\end{equation*}
$$

Consider a disc of mass element $d m$ and infinitesimal width $d x$ having radius $y$, at a distance $x$ from $O$, shown in figure 11.59. The volume of mass element $d m$ is

$$
\begin{equation*}
d V=\pi y^{2} d x \tag{11.21.63}
\end{equation*}
$$

Since the cone is uniform, the mass per unit area is a constant,

$$
\begin{align*}
\rho & =\frac{d m}{d V}=\frac{m_{\text {total }}}{V_{\text {total }}} \\
& =\frac{d m}{d V}=\frac{m}{V} \tag{11.21.64}
\end{align*}
$$

From (11.21.64), we can write

$$
d m=\rho d V=\frac{m}{V} d V
$$

From (11.21.55) and (11.21.63), $d m$ can be written as

$$
d m=2 \frac{m y^{2}}{r^{2} h} d x
$$

Using (11.21.62), $d m$ is

$$
\begin{equation*}
d m=2 \frac{m}{h^{2}} x d x \tag{11.21.65}
\end{equation*}
$$

Using (11.20.5), the moment of inertia of mass element $d m$ about $x$ axis is

$$
d I_{x x}=\frac{1}{2} d m y^{2}
$$

Using (11.21.62) and (11.21.65), $d I_{x x}$ is

$$
d I_{x x}=\frac{m r^{2}}{h^{3}} x^{2} d x
$$

Using (11.6.4), the moment of inertia of the paraboloid about $x$ axis is now an integral from $x=0$ to $x=h$.

$$
\begin{aligned}
I_{x x}=A & =\frac{m r^{2}}{h^{3}} \int_{0}^{h} x^{2} d x \\
& =\frac{m r^{2}}{h^{3}}\left[\frac{x^{3}}{3}\right]_{0}^{h} \\
& =\frac{1}{3} m r^{2}
\end{aligned}
$$

Hence

$$
\begin{equation*}
A=\frac{1}{3} m r^{2} \tag{11.21.66}
\end{equation*}
$$

## 2. About $y$ axis

Using (11.20.5), the moment of inertia of mass element $d m$ about its diameter is

$$
\begin{equation*}
I_{d}=\frac{1}{4} d m y^{2} \tag{11.21.67}
\end{equation*}
$$

Since the diameter is passing through the center of mass of small disc, so we can use parallel axis theorem to find moment of inertia about $y$ axis, by taking $C P$ axis (diameter) parallel to $y$ axis.

$$
d I_{y y}=\frac{1}{4} d m y^{2}+d m x^{2}
$$

Using (11.21.47) and (11.21.50), $d I_{x x}$ is

$$
\begin{aligned}
d I_{y y} & =\frac{3}{4} \frac{m r^{2}}{h^{5}} x^{4} d x+3 \frac{m}{h^{3}} x^{4} d x \\
& =\left[\frac{3}{4} \frac{m r^{2}}{h^{5}}+3 \frac{m}{h^{3}}\right] x^{4} d x
\end{aligned}
$$

Using (11.6.4), the moment of inertia of the cone about $y$ axis is now an integral from $x=0$ to $x=h$.

$$
\begin{aligned}
I_{y y}=A & =\left(\frac{3}{4} \frac{m r^{2}}{h^{5}}+3 \frac{m}{h^{3}}\right) \int_{0}^{h} x^{4} d x \\
& =\left(\frac{3}{4} \frac{m r^{2}}{h^{5}}+3 \frac{m}{h^{3}}\right)\left[\frac{x^{5}}{5}\right]_{0}^{h} \\
& =\frac{3}{20} m\left(r^{2}+4 h^{2}\right)
\end{aligned}
$$

Hence

$$
\begin{equation*}
B=\frac{3}{20} m\left(r^{2}+4 h^{2}\right) \tag{11.21.68}
\end{equation*}
$$

Similarly about $z$ axis

$$
\begin{equation*}
C=I_{z z}=\frac{3}{20} m\left(r^{2}+4 h^{2}\right) \tag{11.21.69}
\end{equation*}
$$

### 11.21.3 Spherical Coordinates

Moment of Inertia of a Thin Spherical Shell (Hollow sphere) about an Axis/Diameter Consider a thin spherical shell of mass $m$ and radius $R$, the origin coincides with center of mass. Since the spherical bodies are completely symmetrical in all directions about their center, so the moment of inertia about all coordinate axes is same. Select any one axis as the axis of rotation. Let it be $z$ axis. Let $P$ be a point on sphere, such that $O P$ vector makes an angle $\theta$ with $y$ axis. Then the distance $d$ of $P$ from $z$ axis is

$$
d=R \cos \theta
$$

Let the shell be of infinitesimally thin wall of uniform density. In this case the volume density of the mass has to be replaced by the surface density of mass $\rho$. Then the surface area of mass $m$ is

$$
A=4 \pi R^{2}
$$

Consider an infinitesimal mass element $d m$ at a distance $R$ from origin between angles $\theta$ and $\theta+d \theta$, shown in the figure 11.61. The mass element $d m$ is a circular ribbon of radius


Figure 11.61: Hollow sphere
$R \cos \theta$, having width $R d \theta$, spread out over the area of the sphere.
Then length of the ribbon $=2 \pi(R \cos \theta)$
and width of the ribbon $=R d \theta$
And area of the ribbon is

$$
\begin{align*}
d A & =2 \pi(R \cos \theta) R d \theta \\
& =2 \pi R^{2} \cos \theta d \theta \tag{11.21.70}
\end{align*}
$$

Since the sphere is uniform, the mass per unit area is a constant,

$$
\begin{align*}
\rho & =\frac{d m}{d A}=\frac{m_{\text {total }}}{A} \\
& =\frac{d m}{2 \pi R^{2} \cos \theta d \theta}=\frac{m}{4 \pi R^{2}} \tag{11.21.71}
\end{align*}
$$

From (11.21.71), we can write

$$
\begin{equation*}
d m=\frac{m}{2} \cos \theta d \theta \tag{11.21.72}
\end{equation*}
$$

The moment of inertia of mass element $d m$ about $z$ axis is

$$
\begin{aligned}
d I_{z z} & =d m d^{2} \\
& =\frac{m}{2} \cos \theta d \theta(R \cos \theta)^{2} \\
& =\frac{m}{2} R^{2} \cos ^{3} \theta d \theta
\end{aligned}
$$

The moment of inertia of the mass $m$ about $z$ axis is now an integral from $\theta=0$ to $\theta=\pi$

$$
\begin{align*}
I_{z z} & =\frac{m}{2} R^{2} \int_{0}^{\pi} \cos ^{3} \theta d \theta \\
& =\frac{m}{2} R^{2} \int_{0}^{\pi}\left[\cos \theta\left(\cos ^{2} \theta\right)\right] d \theta \\
& =\frac{m}{2} R^{2} \int_{0}^{\pi}\left[\cos \theta\left(1-\sin ^{2} \theta\right)\right] d \theta \\
& =\left(\frac{m}{2} R^{2}\right) 2 \int_{0}^{\frac{\pi}{2}}\left(\cos \theta+\sin ^{2} \theta \cos \theta\right) \\
& =m R^{2}\left|\left(\sin \theta-\frac{1}{3} \sin ^{3} \theta\right)\right|_{0}^{\frac{\pi}{2}} \\
& =m R^{2}\left(1-\frac{1}{3}\right) \\
& =m R^{2}\left(\frac{2}{3}\right) \\
& =\frac{2}{3} m R^{2} \tag{11.21.73}
\end{align*}
$$

The moment of inertia of the mass $m$ about diameter or $x$ axis or $y$ axis is

$$
I_{x x}=\frac{2}{3} m R^{2}
$$

### 11.21.4 Moment of Inertia of a Solid Sphere About $z$ Axis

Consider a solid sphere of mass $m$ and radius $R$, the origin coincides with center of mass. Since the spherical bodies are completely symmetrical in all directions about their center, so the moment of inertia about all coordinate axes is same. Select any one axis as the axis of rotation. Let it be $z$ axis. Let $P$ be a point on sphere, such that $O P$ vector makes an angle $\theta$ with $x$ axis. Then the distance $d$ of $P$ from $z$ axis is

$$
d=r \sin \phi
$$

Since the sphere is of uniform density, so the volume density of the mass $m$ is $\rho$. Then the volume of mass $m$ is

$$
V=\frac{4}{3} \pi R^{3}
$$

Consider an infinitesimal mass element $d m$ at a distance $r$ from origin between angles $\theta$ and $\phi$, shown in the figure 11.62. The volume of mass element $d m$ is


Figure 11.62: Solid Sphere

$$
d V=r^{2} \sin \phi d r d \theta d \phi
$$

Since the sphere is uniform, the mass per unit area is a constant,

$$
\begin{align*}
\rho & =\frac{d m}{d V}=\frac{m_{\text {total }}}{V} \\
& =\frac{d m}{r^{2} \sin \phi d r d \theta d \phi}=\frac{m}{\frac{4}{3} \pi R^{3}} \tag{11.21.74}
\end{align*}
$$

From (11.21.74), we can write

$$
\begin{equation*}
d m=\frac{3}{4} \frac{m}{\pi R^{3}} r^{2} \sin \phi d r d \theta d \phi \tag{11.21.75}
\end{equation*}
$$

The moment of inertia of mass element $d m$ about $z$ axis is

$$
\begin{aligned}
d I_{z z} & =d m d^{2} \\
& =\frac{3}{4} \frac{m}{\pi R^{3}} r^{2} \sin \phi d r d \theta d \phi(r \sin \phi)^{2} \\
& =\frac{3}{4} \frac{m}{\pi R^{3}} r^{4} \sin ^{3} \phi d r d \theta d \phi
\end{aligned}
$$

The moment of inertia of the mass $m$ about $z$ axis is now an integral from $r=0$ to $r=R$, $\theta=0$ to $\theta=2 \pi$ and $\phi=0$ to $\phi=\pi$

$$
\begin{align*}
I_{z z} & =\frac{3}{4} \frac{m}{\pi R^{3}} \int_{0}^{2 \pi} \int_{0}^{\pi} \int_{0}^{R} r^{4} \sin ^{3} \phi d r d \theta d \phi \\
& =\frac{3}{4} \frac{m}{\pi R^{3}}\left(\left|\frac{r^{5}}{5}\right|_{0}^{R}|\theta|_{0}^{2 \pi}\right) \int_{0}^{\pi} \sin ^{3} \phi d \phi \tag{11.21.76}
\end{align*}
$$

The integral can be solved as

$$
\begin{align*}
\int_{0}^{\pi} \sin ^{3} \theta d \theta & =\int_{0}^{\pi}\left[\sin \theta\left(\sin ^{2} \theta\right)\right] d \theta \\
& =\int_{0}^{\pi}\left[\sin \theta\left(1-\cos ^{2} \theta\right)\right] d \theta \\
& =\int_{0}^{\pi}\left(\sin \theta-\cos ^{2} \sin \theta d \theta\right) \\
& =\left|\left(-\cos \theta+\frac{1}{3} \cos ^{3} \theta\right)\right|_{0}^{\pi} \\
& =\left(2-\frac{2}{3}\right) \\
& =\frac{4}{3}  \tag{11.21.77}\\
& =\frac{3}{4} \frac{m}{\pi R^{3}} \frac{R^{5}}{5}(2 \pi) \frac{4}{3} \\
& =\frac{2}{5} m R^{2} \tag{11.21.78}
\end{align*}
$$

The moment of inertia of the mass $m$ about diameter or $x$ axis or $y$ axis is

$$
I_{x x}=\frac{2}{5} m R^{2}
$$

### 11.21.5 Moment of Inertia of a Hemisphere About Coordinate Axis

Consider a hemisphere of mass $m$ having center of circular base at origin $O$ with radius $r$. Let $y$ axis be the axis of symmetry. Then

$$
O A=r, C P=x \text { and } O C=y
$$

Then volume of mass $m$ is


Figure 11.63: Hemisphere

$$
\begin{equation*}
V=\frac{2}{3} \pi r^{3} \tag{11.21.79}
\end{equation*}
$$

and the density is

$$
\rho=\frac{m}{V}
$$

or

$$
\begin{equation*}
m=\frac{2}{3} \rho \pi r^{3} \tag{11.21.80}
\end{equation*}
$$

Consider a disc of mass element $d m$ and infinitesimal width $d y$ having radius $x$, at a distance $y$ from $O$, shown in figure 11.63. The equation of the circle (along the boundary of hemisphere) is

$$
x^{2}+y^{2}=r^{2}
$$

and $x^{2}$ can be written as

$$
\begin{equation*}
x^{2}=r^{2}-y^{2} \tag{11.21.81}
\end{equation*}
$$

The volume of mass element $d m$ is

$$
\begin{equation*}
d V=\pi x^{2} d y \tag{11.21.82}
\end{equation*}
$$

Using (11.21.83), (11.21.84) can be written as

$$
\begin{equation*}
d V=\pi\left(r^{2}-y^{2}\right) d y \tag{11.21.83}
\end{equation*}
$$

Since the cone is uniform, the mass per unit area is a constant,

$$
\begin{align*}
\rho & =\frac{d m}{d V}=\frac{m_{\text {total }}}{V_{\text {total }}} \\
& =\frac{d m}{d V}=\frac{m}{V} \tag{11.21.84}
\end{align*}
$$

From (11.21.84), we can write

$$
d m=\rho d V=\frac{m}{V} d V
$$

Using (11.21.79) and (11.21.83), $d m$ can be written as

$$
d m=\frac{3 m x^{2}}{r^{2} h} d y
$$

Using (11.21.47), $d m$ is

$$
\begin{equation*}
d m=\frac{3}{2} \frac{m}{r^{3}}\left(r^{2}-y^{2}\right) d y \tag{11.21.85}
\end{equation*}
$$

Using (11.20.5), the moment of inertia of mass element $d m$ about $y$ axis is

$$
d I_{y y}=\frac{1}{2} d m x^{2}
$$

Using (11.21.85) and (11.21.83), $d I_{y y}$ is

$$
d I_{y y}=\frac{3}{4} \frac{m}{r^{3}}\left(r^{2}-y^{2}\right)^{2} d y
$$

Using (11.6.4), the moment of inertia of the hemisphere about $y$ axis is now an integral from $y=0$ to $y=r$.

$$
\begin{aligned}
I_{y y}=B & =\frac{3}{4} \frac{m}{r^{3}} \int_{0}^{r}\left(r^{4}-2 r^{2} y^{2}+y^{4}\right) d y \\
& =\frac{3}{4} \frac{m}{r^{3}}\left[r^{4} y-\frac{2}{3} r^{2} y^{3}+\frac{1}{5} y^{5}\right]_{0}^{r} \\
& =\frac{3}{4} \frac{m}{r^{3}} r^{5}\left[1-\frac{2}{3}+\frac{1}{5}\right] \\
& =\frac{2}{5} m r^{2}
\end{aligned}
$$

Hence

$$
\begin{equation*}
B=\frac{2}{5} m r^{2} \tag{11.21.86}
\end{equation*}
$$

Similarly about $x$ axis

$$
\begin{equation*}
A=\frac{2}{5} m r^{2} \tag{11.21.87}
\end{equation*}
$$

and $z$ axis

$$
\begin{equation*}
C=I_{z z}=\frac{2}{5} m r^{2} \tag{11.21.88}
\end{equation*}
$$

### 11.21.6 Moment of Inertia of a Ellipsoid About $x$ Axis

Consider an ellipsoid of mass $m$ having center at origin $O$ with $a$ along $x$ axis, $b$ along $y$ and $c$ along $z$ axes (see figure 11.64). Then

$$
O A=a, O B=b \text { and } O C=c
$$

The parametric equations of ellipsoid are

$$
\begin{aligned}
x & =a r \sin \phi \cos \theta \\
y & =b r \sin \phi \sin \theta \\
z & =c r \cos \phi
\end{aligned}
$$

satisfying

$$
\frac{x^{2}}{r^{2}}+\frac{y^{2}}{r^{2}}+\frac{z^{2}}{r^{2}}=1
$$

Then volume of mass $m$ is

$$
\begin{equation*}
V=\frac{4}{3} \pi a b c \tag{11.21.89}
\end{equation*}
$$

and the density is

$$
\begin{aligned}
\rho & =\frac{m}{\bar{V}} \\
& =\frac{3 m}{4 \pi a b c}
\end{aligned}
$$

or

$$
\begin{equation*}
m=\frac{4}{3} \rho \pi a b c \tag{11.21.90}
\end{equation*}
$$



Figure 11.64: Ellipsoid

Consider an infinitesimal mass element $d m$ at a distance $r$ from origin between angles $\theta$ and $\phi$, shown in the figure 11.64. Its volume is

$$
\begin{equation*}
d V=d x d y d z=a b c r^{2} \sin \phi d r d \phi d \theta \tag{11.21.91}
\end{equation*}
$$

where $J=a b c r^{2} \sin \phi$ is the jacobian of the transformation. Using (11.6.4), the moment of inertia of the ellipsoid about $x$ axis is now an integral from $0 \leq r \leq 1,-\frac{\pi}{2} \leq \phi \leq \frac{\pi}{2}$ and $-\pi \leq \theta \leq \pi$. These limits of integration can also be chosen as $0 \leq r \leq 1,0 \leq \phi \leq \pi$ and $0 \leq \theta \leq 2 \pi$.

$$
\begin{align*}
I_{x x} & =\frac{3}{4} \frac{m}{\pi a b c} \int_{0}^{2 \pi} \int_{0}^{\pi} \int_{0}^{1}\left(b^{2} r^{2} \sin ^{2} \phi \sin ^{2} \theta+c^{2} r^{2} \cos ^{2} \phi\right) a b c r^{2} \sin \phi d r d \phi d \theta \\
& =\frac{3}{4} \frac{m}{\pi} \int_{0}^{2 \pi} \int_{0}^{\pi} \int_{0}^{1} r^{4}\left(b^{2} \sin ^{3} \phi \sin ^{2} \theta+c^{2} \cos ^{2} \phi \sin \phi\right) d r d \phi d \theta \\
& =\frac{3}{4} \frac{m}{\pi}\left|\frac{r^{5}}{5}\right|_{0}^{1} \int_{0}^{2 \pi} \int_{0}^{\pi}\left(b^{2} \sin ^{3} \phi \sin ^{2} \theta+c^{2} \cos ^{2} \phi \sin \phi\right) d \phi d \theta \tag{11.21.92}
\end{align*}
$$

The integrals

$$
\int_{0}^{\pi} \cos ^{2} \phi \sin \phi d \phi=\frac{2}{3}
$$

see (11.21.77)

$$
\int_{0}^{\pi} \sin ^{3} \phi d \phi=\frac{4}{3}
$$

and

$$
\int_{0}^{2 \pi} \sin ^{2} \theta d \theta=\pi
$$

Using them in (11.21.92)

$$
\begin{align*}
I_{x x} & =\frac{3}{20} \frac{m}{\pi}\left(b^{2} \frac{4}{3} \pi+c^{2} 2 \pi \frac{2}{3}\right) \\
& =\frac{1}{5} m\left(b^{2}+c^{2}\right) \tag{11.21.93}
\end{align*}
$$

The moment of inertia of the mass $m$ about $x$ axis is

$$
I_{x x}=\frac{1}{5} m\left(b^{2}+c^{2}\right)
$$

Similarly about $y$ axis is

$$
I_{y y}=\frac{1}{5} m\left(a^{2}+c^{2}\right)
$$

and about $z$ axis is

$$
I_{z z}=\frac{1}{5} m\left(a^{2}+b^{2}\right)
$$

To calculate the products of inertia, we make use of orthogonal trigonometric relations. First the products of inertia w.r.t. pair of axes $(o y, o z)$ are as

$$
\begin{aligned}
I_{y z}=I_{z y} & =\iiint_{V} \rho y z d V \\
D & =\rho \int_{0}^{2 \pi} \int_{0}^{\pi} \int_{0}^{1} b c r^{2} \sin \phi \sin \theta \cos \phi a b c r^{2} \sin \phi d r d \phi d \theta \\
& =\rho a b^{2} c^{2} \int_{0}^{2 \pi} \int_{0}^{\pi} \int_{0}^{1} r^{4} \sin \theta \sin ^{2} \phi \cos \phi d r d \phi d \theta
\end{aligned}
$$

Since (11.21.40) is

$$
\int_{0}^{2 \pi} \sin \theta d \theta=\int_{0}^{2 \pi} \cos \theta d \theta=0
$$

Hence

$$
D=0
$$

Next the products of inertia w.r.t. pair of axes $(o x, o z)$ are as

$$
\begin{aligned}
I_{x z}=I_{z x} & =\iiint_{V} \rho x z d V \\
E & =\rho \int_{0}^{2 \pi} \int_{0}^{\pi} \int_{0}^{1} a c r^{2} \sin \phi \cos \theta \cos \phi a b c r^{2} \sin \phi d r d \phi d \theta \\
& =\rho a^{2} b c^{2} \int_{0}^{2 \pi} \int_{0}^{\pi} \int_{0}^{1} r^{4} \cos \theta \sin ^{2} \phi \cos \phi d r d \phi d \theta
\end{aligned}
$$

Using (11.21.40)

$$
\begin{equation*}
E=0 \tag{11.21.94}
\end{equation*}
$$

Finally the products of inertia w.r.t. pair of axes $(o x, o y)$ are as

$$
\begin{aligned}
I_{x y}=I_{y z} & =\iiint_{V} \rho x y d V \\
F & =\rho \int_{0}^{2 \pi} \int_{0}^{\pi} \int_{0}^{1} a b r^{2} \sin \phi \cos \theta \sin \phi \sin \theta a b c r^{2} \sin \phi d r d \phi d \theta \\
& =\rho a^{2} b^{2} c \int_{0}^{2 \pi} \int_{0}^{\pi} \int_{0}^{1} r^{4} \cos \theta \sin \theta \sin ^{3} \phi \cos \phi d r d \phi d \theta
\end{aligned}
$$

Since (11.21.42) is

$$
\int_{0}^{2 \pi} \sin \theta \cos \theta d \theta=0
$$

Hence

$$
F=0
$$

Also This is due to the symmetry of the ellipsoid (under consideration), the $x, y$ and $z$ axes, coincide with its the principal axes, and hence the products of inertia are zero. The inertia
matrix [ $I$ ] can be written as

$$
[I]=\left(\begin{array}{ccc}
\frac{1}{5} m\left(b^{2}+c^{2}\right) & 0 & 0  \tag{11.21.95}\\
0 & \frac{1}{5} m\left(a^{2}+c^{2}\right) & 0 \\
0 & 0 & \frac{1}{5} m\left(a^{2}+b^{2}\right)
\end{array}\right)
$$

### 11.21.7 Moment of Inertia of a Prolate Ellipsoid About $x$ Axis

If a sphere is squash to make a shorter fatter shape (a bit like a burger). In such case it is called an prolate ellipsoid. If we chop it through the middle to get a circle, then the volume is the area of the circle times $2 / 3 \mathrm{rd}$ of the minor axis.
Consider an ellipsoid of mass $m$ having center at origin $O$ with $a$ along $x$ axis and $b$ along $y$ and $z$ axes. Then

$$
O A=a, O B=b \text { and } O C=c=b
$$



Figure 11.65: Prolate Ellipsoid

Then volume of mass $m$ is

$$
\begin{equation*}
V=\frac{4}{3} \pi a b c=\frac{4}{3} \pi a b^{2} \tag{11.21.96}
\end{equation*}
$$

and the density is

$$
\rho=\frac{m}{V}
$$



Figure 11.66: Prolate Ellipsoid
or

$$
\begin{equation*}
m=\frac{4}{3} \rho \pi a b^{2} \tag{11.21.97}
\end{equation*}
$$

Consider a disc of mass element $d m$ of infinitesimal width $d x$ at a distance $x$ from $O$, shown in figure 11.65. The equation of the ellipse (along the boundary of ellipsoid) is (see figure 11.66)

$$
\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1
$$

and $y^{2}$ can be written as

$$
\begin{equation*}
y^{2}=b^{2}\left(1-\frac{x^{2}}{a^{2}}\right) \tag{11.21.98}
\end{equation*}
$$

The volume of mass element $d m$ is (area of circle $\times$ height)

$$
\begin{equation*}
d V=\pi y^{2} d x \tag{11.21.99}
\end{equation*}
$$

Using (11.21.98), (11.21.99) can be written as

$$
\begin{equation*}
d V=\pi b^{2}\left(1-\frac{x^{2}}{a^{2}}\right) d x \tag{11.21.100}
\end{equation*}
$$

Since the ellipsoid is uniform, the mass per unit volume is a constant,

$$
\begin{align*}
\rho & =\frac{d m}{d V}=\frac{m_{\text {total }}}{V_{t o t a l}} \\
& =\frac{d m}{d V}=\frac{m}{V} \tag{11.21.101}
\end{align*}
$$

From (11.21.101), we can write

$$
d m=\rho d V=\frac{m}{V} d V
$$

Using (11.21.96) and (11.21.100), $d m$ can be written as

$$
\begin{equation*}
d m=\frac{3}{4} m \frac{b^{2}}{a}\left(1-\frac{x^{2}}{a^{2}}\right) d x \tag{11.21.102}
\end{equation*}
$$

Using (11.20.5), the moment of inertia of mass element $d m$ about $x$ axis is

$$
d I_{x x}=\frac{1}{2} d m y^{2}
$$

Using (11.21.98) and (11.21.102), $d I_{x x}$ is

$$
d I_{x x}=\frac{3}{8} \frac{b^{2}}{a} m\left(1-\frac{x^{2}}{a^{2}}\right)^{2} d x
$$

Using (11.6.4), the moment of inertia of the ellipsoid about $x$ axis is now an integral from $x=-a$ to $x=a$.

$$
\begin{aligned}
I_{x x}=A & =\frac{3}{8} \frac{m b^{2}}{a^{5}} \int_{-a}^{a}\left(a^{4}-2 a^{2} x^{2}+x^{4}\right) d x \\
& =\frac{3}{8} \frac{m b^{2}}{a^{5}} 2 \int_{0}^{a}\left(a^{4}-2 a^{2} x^{2}+x^{4}\right) d x \\
& =\frac{3}{4} \frac{m b^{2}}{a^{5}}\left[a^{4} x-\frac{2}{3} a^{2} x^{3}+\frac{1}{5} x^{5}\right]_{0}^{a} \\
& =\frac{3}{4} \frac{m b^{2}}{a^{5}} a^{5}\left[1-\frac{2}{3}+\frac{1}{5}\right] \\
& =\frac{2}{5} m b^{2}
\end{aligned}
$$

Hence

$$
\begin{equation*}
A=\frac{2}{5} m b^{2} \tag{11.21.103}
\end{equation*}
$$

Example 11.21.6. Four particle of masses $m, 2 m, 3 m$ and $4 m$ are located at ( $a, a, a$ ), $(a,-a,-a),(-a, a,-a)$ and $(-a,-a, a)$ respectively. Complete its inertia matrix and hence determine its principal moments of inertia.


Figure 11.67: Four particles system

Solution: See the Fig. 11.67, the masses $m_{1}=m, m_{2}=2 m, m_{3}=3 m$ and $m_{4}=$ $4 m$ are located at $D=(a, a, a), A=(a,-a,-a), B=(-a, a,-a)$ and $C=(-a,-a, a)$ respectively. Here the origan of regular trihedral system can be considered as the center of the cube formed by these points. For $I_{x x}$, the distance of $m_{1}$ from $x$ axis is

$$
d_{1}=a^{2}+a^{2}=2 a^{2} \text { (see Fig. 11.68) }
$$

Similarly

$$
d_{2}=2 a^{2}=d_{3}=d_{4}
$$

Using (11.1.3), the moment of inertia about $x$ axis is

$$
\begin{aligned}
I_{x x}=A & =\sum_{i=1}^{4} m_{i} d_{i}^{2} \\
& =m_{1} d_{1}^{2}+m_{2} d_{2}^{2}+m_{3} d_{3}^{2}+m_{4} d_{4}^{2} \\
& =m 2 a^{2}+2 m 2 a^{2}+3 m 2 a^{2}+4 m 2 a^{2} \\
& =(m+2 m+3 m+4 m) 2 a^{2} \\
& =20 m a^{2}
\end{aligned}
$$



Figure 11.68: Four particles system
$I_{x x}$ can also be calculated by using (11.5.7) as

$$
\begin{aligned}
I_{x x}=A & =\sum_{i=1}^{4} m_{i}\left(y_{i}^{2}+z_{i}^{2}\right) \\
& =m_{1}\left(y_{1}^{2}+z_{1}^{2}\right)+m_{2}\left(y_{2}^{2}+z_{2}^{2}\right)+m_{3}\left(y_{3}^{2}+z_{3}^{2}\right)+m_{4}\left(y_{4}^{2}+z_{4}^{2}\right) \\
& =m\left(a^{2}+a^{2}\right)+2 m\left(a^{2}+a^{2}\right)+3 m\left(a^{2}+a^{2}\right)+4 m\left(a^{2}+a^{2}\right) \\
& =20 m a^{2}
\end{aligned}
$$

Similarly

$$
I_{y y}=B=20 m a^{2}
$$

and

$$
I_{z z}=C=20 m a^{2}
$$

The product of inertia $I_{y z}$ can be calculated by using (11.6.1)

$$
\begin{aligned}
I_{y z}=D & =\sum_{i=1}^{4} m_{i} y_{i} z_{i} \\
& =m_{1} y_{1} z_{1}+m_{2} y_{2} z_{2}+m_{3} y_{3} z_{3}+m_{4} y_{4} z_{4} \\
& =m a^{2}+2 m a^{2}-3 m a^{2}-4 m a^{2} \\
& =-4 m a^{2}
\end{aligned}
$$

The product of inertia $I_{y z}$ can be calculated by using (11.6.2)

$$
\begin{aligned}
I_{x z}=E & =\sum_{i=1}^{4} m_{i} x_{i} z_{i} \\
& =m_{1} x_{1} z_{1}+m_{2} x_{2} z_{2}+m_{3} x_{3} z_{3}+m_{4} x_{4} z_{4} \\
& =m a^{2}-2 m a^{2}+3 m a^{2}-4 m a^{2} \\
& =-2 m a^{2}
\end{aligned}
$$

The product of inertia $I_{x y}$ can be calculated by using (11.6.3)

$$
\begin{aligned}
I_{x y}=F & =\sum_{i=1}^{4} m_{i} x_{i} y_{i} \\
& =m_{1} x_{1} y_{1}+m_{2} x_{2} y_{2}+m_{3} x_{3} y_{3}+m_{4} x_{4} y_{4} \\
& =m a^{2}-2 m a^{2}-3 m a^{2}+4 m a^{2} \\
& =0
\end{aligned}
$$

The inertia matrix $[I]$ can be written as

$$
\begin{align*}
{\left[I_{i j}\right] } & =\left(\begin{array}{ccc}
20 m a^{2} & 0 & 2 m a^{2} \\
0 & 20 m a^{2} & 4 m a^{2} \\
2 m a^{2} & 4 m a^{2} & 20 m a^{2}
\end{array}\right) \\
& =2 m a^{2}\left(\begin{array}{ccc}
10 & 0 & 1 \\
0 & 10 & 2 \\
1 & 2 & 10
\end{array}\right) \tag{11.21.104}
\end{align*}
$$

Since inertia matrix (11.21.104) is symmetric, using (11.11.13) its characteristic equation is
$\left|\begin{array}{ccc}10-k & 0 & 1 \\ 0 & 10-k & 2 \\ 1 & 2 & 10-k\end{array}\right|=0$

This equation has three real roots.

$$
(10-k)\left((10-k)^{2}-5\right)=0
$$

the roots are $k=10$ and $k=10 \pm \sqrt{5}$
or $k_{1}=20 m a^{2}, k_{2}=2 m a^{2}(10+\sqrt{5})$ and $k_{3}=2 m a^{2}(10-\sqrt{5})$
Using 11.11.13, the inertia matrix for principal axes through $O$ is

$$
\begin{aligned}
\left(\begin{array}{ccc}
A^{*} & 0 & 0 \\
0 & B^{*} & 0 \\
0 & 0 & C^{*}
\end{array}\right) & =\left(\begin{array}{ccc}
k_{1} & 0 & 0 \\
0 & k_{2} & 0 \\
0 & 0 & k_{3}
\end{array}\right) \\
& =\left(\begin{array}{ccc}
20 m a^{2} & 0 & 0 \\
0 & 2 m a^{2}(10+\sqrt{5}) & 0 \\
0 & 0 & 2 m a^{2}(10-\sqrt{5})
\end{array}\right)
\end{aligned}
$$

Hence the principal moment of inertia about $O$ are

$$
\begin{aligned}
& A^{*}=20 m a^{2} \\
& B^{*}=2 m a^{2}(10+\sqrt{5}) \\
& C^{*}=2 m a^{2}(10-\sqrt{5})
\end{aligned}
$$

Example 11.21.7. For the body shown in Fig. 11.69, $I_{A B}=34.65 \mathrm{~kg}-\mathrm{m}^{2}$ and $M=$ 0.875 kg . Find the radius of gyration of the body with respect to the $A B$ axis.

Solution: Here $I_{A B}=34.65 \mathrm{~kg}-\mathrm{m}^{2}$ and $M=0.875 \mathrm{~kg}$. using (11.4.3), the radius of gyration

$$
\begin{aligned}
K & =\sqrt{\frac{I}{m}} \\
& =\sqrt{\frac{34.65}{0.875}}=\sqrt{39.6} \mathrm{~m} \\
& =6.293 \mathrm{~m}
\end{aligned}
$$



Figure 11.69: Rigid body

Example 11.21.8. :- $A$ rigid body is free to rotate about its centroid $G$, the principal moment of inertia about $G$ are 7, 25, 32 units respectively. The body has an angular velocity $\omega$ about a line through $G$, whose direction ratios are 4:0:3. Show that after time $t$, the angular velocity about the principal axis of inertia about $G$ is

$$
\vec{\omega}=\left\langle\frac{4}{5} \omega \cos \phi, \frac{4}{5} \omega \sin \phi, \frac{3}{5} \omega \cos \phi\right\rangle
$$

Where

$$
\begin{equation*}
\tan \left(\frac{\phi}{2}\right)=\tanh \left(\frac{3 \omega t}{10}\right) \tag{11.21.105}
\end{equation*}
$$

Solution Consider $O X Y Z$ a regular trihedral system, with $O$ coincides with $G$. Let

$$
\vec{\omega}=\left\langle\omega_{x}, \omega_{y}, \omega_{z}\right\rangle
$$

be the angular velocity about principal axis at any time $t$. At $t=0$, the angular velocity is

$$
\begin{equation*}
\vec{\omega}(0)=\left\langle\frac{4}{5} \omega, 0, \frac{3}{5} \omega\right\rangle \tag{11.21.106}
\end{equation*}
$$



Figure 11.70: Rigid body rotates about its centroid $G$

Here $A^{*}=7, B^{*}=25$ and $C^{*}=32$
Since the body is free to rotate (no torque), then Euler's dynamical equations (11.15.4) are

$$
\left.\begin{array}{rl}
7 \dot{\omega}_{x}-(25-32) \omega_{y} \omega_{z} & =0 \\
25 \dot{\omega}_{y}-(32-7) \omega_{x} \omega_{z} & =0 \\
32 \dot{\omega}_{z}-(7-25) \omega_{x} \omega_{y}= & 0
\end{array}\right\}
$$

or

$$
\begin{align*}
\dot{\omega}_{x}+\omega_{y} \omega_{z} & =0  \tag{11.21.107}\\
\dot{\omega}_{y}-\omega_{x} \omega_{z} & =0  \tag{11.21.108}\\
16 \dot{\omega}_{z}+9 \omega_{x} \omega_{y} & =0 \tag{11.21.109}
\end{align*}
$$

To solve this system, we try to find a relation in one variable i.e. in $\omega_{x}, \omega_{y}$ or $\omega_{z}$ and solve it. Let we find a relation for $\omega_{y}$.
From (11.21.108), we can write

$$
\begin{align*}
\dot{\omega}_{y} & =\omega_{x} \omega_{y} \\
\frac{d \omega_{y}}{d t} & =\omega_{x} \omega_{z} \\
\frac{d \omega_{y}}{\omega_{x} \omega_{z}} & =d t \tag{11.21.110}
\end{align*}
$$

Now try to find $\omega_{x}$ and $\omega_{z}$ in term of $\omega_{y}$. For this, multiplying (11.21.107) by $\omega_{x}$ and (11.21.108) by $\omega_{y}$ and then adding, we have

$$
\begin{equation*}
\omega_{x} \dot{\omega}_{x}+\omega_{y} \dot{\omega}_{y}=0 \tag{11.21.111}
\end{equation*}
$$

Integrating (11.21.111), we have

$$
\begin{equation*}
\omega_{x}^{2}+\omega_{y}^{2}=C \tag{11.21.112}
\end{equation*}
$$

Using initial condition (11.21.106), $C=\frac{16}{25} \omega^{2}$, then (11.21.112) becomes

$$
\omega_{x}^{2}+\omega_{y}^{2}=\frac{16}{25} \omega^{2}
$$

or

$$
\omega_{x}^{2}=\frac{16}{25} \omega^{2}-\omega_{y}^{2}
$$

Hence $\omega_{x}$ in term of $\omega_{y}$ is

$$
\begin{equation*}
\omega_{x}=\left(\frac{16}{25} \omega^{2}-\omega_{y}^{2}\right)^{\frac{1}{2}} \tag{11.21.113}
\end{equation*}
$$

Next multiplying (11.21.108) by $9 \omega_{y}$ and (11.21.109) by $\omega_{z}$ and then adding, we have

$$
\begin{equation*}
9 \omega_{y} \dot{\omega}_{y}+16 \omega_{z} \dot{\omega}_{z}=0 \tag{11.21.114}
\end{equation*}
$$

Integrating (11.21.111), we have

$$
\begin{equation*}
9 \omega_{y}^{2}+16 \omega_{z}^{2}=C \tag{11.21.115}
\end{equation*}
$$

Using initial condition (11.21.106), $C=\frac{16}{25} \omega^{2}$, then (11.21.115) becomes

$$
9 \omega_{y}^{2}+16 \omega_{z}^{2}=\frac{144}{25} \omega^{2}
$$

or

$$
\omega_{z}^{2}=\frac{9}{25} \omega^{2}-\frac{9}{16} \omega_{y}^{2}
$$

Hence $\omega_{z}$ in term of $\omega_{y}$ is

$$
\begin{equation*}
\omega_{z}=\frac{3}{4}\left(\frac{16}{25} \omega^{2}-\omega_{y}^{2}\right)^{\frac{1}{2}} \tag{11.21.116}
\end{equation*}
$$

Using (11.21.113) and (11.21.116) in (11.21.110), we have

$$
\begin{equation*}
\frac{d \omega_{y}}{\left(\frac{4}{5} \omega\right)^{2}-\omega_{y}^{2}}=\frac{3}{4} d t \tag{11.21.117}
\end{equation*}
$$

(11.21.117) is separable first order differential equation in $\omega_{y}$ and its solution is

$$
\begin{align*}
\frac{5}{4 \omega} \tanh ^{-1}\left(\frac{5}{4 \omega} \omega_{y}\right) & =\frac{3}{4} t \\
\tanh ^{-1}\left(\frac{5}{4 \omega} \omega_{y}\right) & =\frac{3}{5} \omega t \\
\frac{5}{4 \omega} \omega_{y} & =\tanh \left(\frac{3}{5} \omega t\right) \\
\omega_{y} & =\frac{4}{5} \omega \tanh \left(\frac{3}{5} \omega t\right) \tag{11.21.118}
\end{align*}
$$

Next consider the trigonometric relation

$$
\tanh 2 \theta=\frac{2 \tanh \theta}{1+\tanh ^{2} \theta}
$$

or

$$
\tanh \left(\frac{3}{5} \omega t\right)=\frac{2 \tanh \left(\frac{3}{10} \omega t\right)}{1+\tanh ^{2}\left(\frac{3}{10} \omega t\right)}
$$

Using (11.21.105), right side becomes

$$
\begin{align*}
\tanh \left(\frac{3}{5} \omega t\right) & =\frac{2 \tan \left(\frac{\phi}{2}\right)}{1+\tan ^{2}\left(\frac{\phi}{2}\right)} \\
& =2 \sin \left(\frac{\phi}{2}\right) \cos \left(\frac{\phi}{2}\right) \\
& =\sin \phi \tag{11.21.119}
\end{align*}
$$

Using (11.21.119) in (11.21.118), we have

$$
\begin{equation*}
\omega_{y}=\frac{4}{5} \omega \sin \phi \tag{11.21.120}
\end{equation*}
$$

Using (11.21.122) in (11.21.113) and (11.21.116) in (11.21.110), we have

$$
\begin{equation*}
\omega_{x}=\frac{4}{5} \omega \cos \phi \tag{11.21.121}
\end{equation*}
$$

and

$$
\begin{equation*}
\omega_{z}=\frac{3}{5} \omega \cos \phi \tag{11.21.122}
\end{equation*}
$$

Hence the angular velocity about the principal axis of inertia about $G$ is

$$
\vec{\omega}=\left\langle\frac{4}{5} \omega \cos \phi, \frac{4}{5} \omega \sin \phi, \frac{3}{5} \omega \cos \phi\right\rangle
$$

Hence the proof.

## Exercises

1. In example 11.18.1, find the moment of inertia about an axis passing through one end of the system and perpendicular to the rod.
2. Find moment of inertia of a uniform rod of mass $m$ making an angle $\frac{\pi}{3}$ with $x$-axis with one end at origin having length $a$ about
(a) an axis passing through center and perpendicular to the rod.
(b) Coordinate axes.
(c) finding products of inertia, hence complete inertia matrix.
3. Find moment of inertia of a uniform rod of mass $m$ making an angle $\frac{\pi}{4}$ with $x$-axis with center at origin having length $a$ about
(a) an axis passing through center and perpendicular to the rod.
(b) Coordinate axes.
(c) finding products of inertia, hence complete inertia matrix.
4. Calculate the moment of inertia about the diagonal of a rectangular lamina.
5. Calculate the moment of inertia about the $y$-axis of the square lamina.
6. Calculate the moment of inertia about the diagonal of the square lamina.

## Bibliography

[1] The International System of Units (SI), NIST Special Publication 330, 2008 Edition, B.N. Taylor, editor. United States Department of Commerce, National Institute of Standards and Technology Gaithersburg, MD 20899.
[2] Q.K.Ghori, Introduction to Mechanics, West Pak Publishing Co. Ltd., Lahore 1971.
[3] D. Halliday, R. Resnick and J. Walker, Fundamentals of Physics,John Wiley \& Sons, lnc., 8th ed. extended, 2008.
[4] D. G. Zill and M. R. Cullen, Differential Equations with Boundary-Value Problems, 7th Edition, 2009.
[5] Richard Bronson and G. B. Costa, Schaum's Outline of Differential Equations, McGraw-Hill Companies, Inc., 3rd Edition, 2006.
[6] H. Anton, I. Bivens and S. Davis, Calculus, John Wiley \& Sons, Inc., Early Transcendentals 10th edition, 2012.
[7] L. D. Landau, E. M. Lifshitz, Mecanics, Pergamon Press, Oxford: butterworth, 3rd edition, 152005.
[8] K. Singh, Mechanics, Department of Mathematics, Directorate of Distance Education, Guru Jambheshwar University of Science \& Technology Hisar-125001.
[9] S.S. Bhavikatti, A textbook of Classical Mechanics, New Age International Publishers, Second Edition Reprint, 2009.
[10] R.G. Takwale and P.S. Puranik, Introduction to Classical Mechanics, Tata McGrawHill Publishing Company Ltd. 39th reprint 2009.
[11] Lecture notes of Mechanics MIT, USA.
[12] Wikipedia.

## Index

$\lambda, \mu$ theorem, 41, 81
2 -space, 9
3 -space, 9
addition of vectors, 31
Angle between two vectors, 18
angle of friction, 144, 151-153
angle of repose, 146
angular momentum, 177, 179, 180, 262, 264, 277
angular momentum in polar coordinates, 180 asymmetric top, 277
balancing, 123
base unit, 1
British Engineering system, 6
C.G.S., 7
center of gravity, 219, 222
center of mass, $219,222,228,229,235,238$
central impact, 168
centroid, 228, 239, 284
CIPM, 3
closed system, 157
coefficient of friction, $144,152,153$
coefficient of kinetic friction, 143
coefficient of restitution, 170
coefficient of static friction, 143
collinear forces, 63
collinear vectors, 16
collision, 157, 163
concurrent and coplanar vectors, 46, 96
concurrent and non-coplanar forces, 103
concurrent and non-coplanar vectors, 50
concurrent forces, 63
concurrent vectors, 16
condition of equilibrium, 146
conditions of equilibrium, 123
cone of friction, 145
conservative force, $191,192,195,204,206$
continuous distribution, 229, 248, 257
converse perpendicular axis theorem, 261
coplanar, 285
coplanar forces, 63
coplanar vectors, $16,43,66,71,93$
cross product of two vector, 28
curl, 55
density, 219
derived unit, 1
dimension, 5
direct impact, 168
direction angles, 20
divergence, 55
dot product of two vectors, 17
dry friction, 141
dynamics, 63
eccentric impact, 168
eigen value, 276
eigen values, 276
elastic bodies, 167
elastic collision, 163,165
energy, 187
equilibrium, 123
equimomental systems, 282
Euler's dynamical equations, 290
first condition of equilibrium, 124
fixed axis, 264
fixed point, 264,269
fluid friction, 141
flux, 55
force, 61
friction, 141
gradient of a function, 54
gravitational field, 192
head to tail method, 66
horizontal plane, 146
impact, 163, 167
impulse, 157, 160
impulse-momentum principle, 170
impulsive force, 163
inelastic collision, 163
inertia matrix, 267
isolated system, 157
kinetic energy, 162, 187, 188, 190, 206, 269
kinetic friction, 142
lamina, 221
law of conservation of angular momentum, 181
law of conservation of energy, 206
law of conservation of linear momentum, 159
laws of dry friction, 143
least force, 147, 149
limiting equilibrium, 144, 146, 151
limiting friction, 144
line of impact, 168
linear momentum, 157, 158, 162, 177
magnitude of a vector, 14
mass, 283
mechanical energy, 206
moment arm, 106
moment of a force, 105, 106, 138
moment of inertia, 288
moment of mass, 221
momental ellipsoid, 292
moments of inertia, 247, 248, 255-257
moments of inertia about coordinate axes, 255
moments of inertia of one dimensional particle, 249
moments of inertia of three dimensional particle, 251
moments of inertia of two dimensional particle, 250

Newton's second law of motion, 158
non-coplanar forces, 63
non-coplanar vectors, 17
normal reaction, 144, 151
normalizing of a vector, 15
oblique impact, 168
open system, 157
orthogonal components of a vector, 23
parallel axis theorem, 258
parallelogram law , 71
parallelogram law of vector addition, 34
period of deformation, 169
period of restitution, 169
perpendicular axis theorem, 260
Polygon law of vector addition, 32
Polygon method, 68
potential energy, 189, 190, 192, 195, 206
prefix, 3
principal axes, 271, 280, 285, 288
principle of gyroscopic compass, 291
principle of virtual work, 217
products of inertia, 247, 277
radius of gyration, 253
ratio theorem, 81
rectangular components of a vector, 23
role of friction, 145
rough horizontal plane, 148
rough inclined plane, 146, 149
scalar, 9
scalar product of three vectors, 30
scalar product of two vectors, 17
SI unit, 1
spherical top, 277
static friction, 142
statics, 63
symbol, 3
symmetrical top, 277
symmetry, 238
tractive force, 148
triangle law of vector addition, 32
triangle method, 67
types of friction, 141
uniform circular motion, 179
unit, 1
unit vector, 13
upward normal, 148
variable force, 191
vector, 9,193
vector field, 54
vector product of two vectors, 28
virtual displacement, 215
virtual work, 215, 216
work, 185, 186, 188, 191

6

Introduction to Mechanics, Fundamental concepts and definitions
Forces, system of forces classification of forces, Composition and Resolution of forces, Composition of Concurrent Forces, Resultant of co-planar and non-concurrent forces Resultant of co-planar and concurrent forces. Law of parallelogram of forces Ratio theorem $(\lambda, \mu)$ Theorem Resolution Of Forces: Resolved Components of a Force in Two given Directions Rectangular Components of a Force, Resolved Components of a Force in Rectangular Coordinate System, Resultant of concurrent and Coplanar Forces Using Rectangular Components Resolution Of A System Of Parallel Force, Resultant of Three Concurrent and Non-coplanar Forces Moment Of Force Moment Of Force About A Point Virginian's Theorem Couples, Equivalent Couples, Composition Of Couples Resolution Of A Force Into A Force And Couple Condition Of Equilibrium Coplanar Force System, Law of sines and Lami’s theorem Friction, Laws Of Friction, Cone of Friction and Role of Friction Equilibrium Of A Particle On A Rough Horizontal plane and inclined Plane Equilibrium and moment of a force
Linear Momentum, Impulse and Collision Law of Conservation of linear momentum

Angular momentum, Law of Conservation of angular momentum
Work, work done by constant force, work done by a variable force, energy, power
Conservative force, law of conservation of energy
Virtual Displacement And Virtual Work, Workless Constraints
Principle Of Virtual Work For A Single Particle, Set Of Particles And For A Rigid Body
Center Of Mass and Center Of Gravity: density ( $1,2 \& 3$ dimensional objects)
Centroid Of A Body Or A System Of Particles And Centroid Of A Plane Region
Centre of Mass of a solid and a surface of revolution
Moments of Inertia of a Particle and system, Radius of Gyration
Moments of Inertia ( $1,2 \& 3$ dimensional objects)
Moment of Inertia of a Mass with Continuous Distribution
Moments of Inertia ( $1,2 \& 3$ dimensional objects) Moment of Inertia about Coordinate Axes Product of Inertia for a System of Continuous Distribution of Mass, Parallel Axis Theorem Perpendicular Axis Theorem, Converse of Perpendicular Axis Theorem. Principal Axes

